• Title/Summary/Keyword: Optical sensor linear fire detection system

Search Result 2, Processing Time 0.014 seconds

A Study on the Characteristics of an Optical Sensor Linear Fire Detection System with Miniature Model Fire Experiment (축소 모형실험을 통한 광센서 선형 화재 감지 시스템의 특성에 관한 연구)

  • Kim, Dong-Eun;Kim, Si-Kuk;Lee, Young-Sin;Lee, Chun-Ha;Lim, Woo-Sup
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, we conducted a low temperature operating test and miniature tunnel model test to study the fire detection capability and properties of an early fire detection system using an optical sensor linear detector that can be installed in harsh environments such as tunnel or utility-pipe conduits which are becoming the major and national infrastructure facilities. The test showed that the optical sensor linear detector was the only one functioned properly among five thermal detectors installed at a low temperature of $-20^{\circ}C$ for 5 days. To study were analyzed adaptability of optical sensor linear detector in the windy tunnel, the operating properties of the optical sensor linear detector when the wind velocity was varied between 0 m/s and 1 m/s in a miniature tunnel model. The temperature change was high when the wind velocity was 0 m/s.

Study on the Development of Optical Sensor Linear Fire Detection System Using Raman Scattering (라만산란을 이용한 광센서 선형 화재감지시스템 개발에 관한 연구)

  • Lee, Gun-Ho;Lim, Woo-Sub;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.27-38
    • /
    • 2016
  • The paper reports the development of a distributed temperature sensing (DTS) system, which is a fire detection system using optical sensor linear detectors that depends on foreign and domestic technologies. This study accordingly analyzed the electrical signal patterns of Raman scattering light mainly used for temperature sensing among back-scattered light generated in optical fiber by using an oscilloscope. Through the measurement results, it could be verified that the Stokes signal patterns had little change by the temperature increase, but the temperature-sensitive anti-Stokes patterns had relative increase of the changes. This study developed a K-DTS system, which is an optical sensor linear fire detection system composed of an optical repeater and a receiver that can detect fires using Raman scattering light. It could be verified that the developed K-DTS system satisfied the type approval standards through the sensitivity tests using the rate of rise type and fixed temperature type sensitivity testers. In addition, performance experiments have been performed for performance evaluation of the K-DTS system developed in comparison with S-DTS system which has been imported from abroad and widely used in Korea. It can be confirmed from the results of the performance experiments using model tunnels that comparable performances can be obtained in fire detection locations and the measurements of fire temperatures.