• Title/Summary/Keyword: Optical penetration depth

Search Result 43, Processing Time 0.023 seconds

Design of PWM-Based Photo Irradiation System for Acne Treatment (여드름 치료를 위한 PWM 기반 광 조사 시스템 설계)

  • Kim, Chang-Su;Lim, Hyun-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.207-215
    • /
    • 2012
  • As one of photo dynamic therapies, the existing LED photo irradiation method with 635 nm continuous wave has most frequently been used for acne treatment, it suffered from a low energy efficiency and generation of a large amount of heat in tissues requiring improvement measures. In this thesis, a LED photo irradiation system for acne treatment has been designed using PWM(Pulse Width Modulation) mode to enhance the energy efficiency and prevent thermal destruction in tissues. System configuration consisting largely of timer module, PWM module, and photo transfer device has been designed with the use of 1 W LED at a wavelength of 660 nm for the photo transfer device to increase skin penetration depth for treatment of acne. Frequency and wave form generated by using PWM control was verified along with confirmation of output energy of 660 nm LED and surface temperatures of tissues, followed by evaluation of stable energy outputs and stability of tissues. The results indicated that whereas power loss was high and thermal destruction in tissues was exhibited when C.W mode was used to obtain the optical energy of 1 W LED at a wavelength of 660 nm for acne treatment, realization of PWM mode allowed lowering of power consumption for LED through pulse width modulation, and no occurrence of thermal destruction in tissues, suggesting that PWM mode is safer and more effective for treatment of acne than C.W mode.

A Study on Optical Design Factors by Artificial Recharge Performance (인공함양 주입성능평가에 의한 설계요소 산정 연구)

  • Won, Kyoung-Sik;Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.603-615
    • /
    • 2020
  • The design factors of artificial recharge are determined by considering the hydrogeological characteristics of the aquifer. The optimal design factors for artificial recharge were derived after performing the injection tests step by step for each injection type (vertical well, ditch and mixed type), which were built in the test site of the study area. It was analyzed that the difference in the injection effect according to the diameter of the injection well was not large, and the 100 mm well was evaluated as appropriate in consideration of the availability and economy of land use. Since the injection effect was well maintained even in the upper rock, the depth of the injection well was proposed for the alluvial layer and the upper rock layer. On the other hand, in four cases of filter media in the ditch, it was analyzed that the penetration efficiency and the hydraulic interference effect indicated excellent injection performance when a filter medium of 10 to 30 mm diameter was filled in the ditch. In addition, the proper spacing of the injection wells was analyzed as 9~12 m considering the interference efficiency. The interference efficiency attenuation coefficient per 1 m of hole spacing was calculated to be 1.75% in this area. In the future study, the artificial recharge design factors obtained in this stage are applied and verified on site construction and operation. Also it is expected to contribute to securing water in areas where there is always a lack of water.

Analysis of Optical Characteristic Near the Cloud Base of Before Precipitation Over the Yeongdong Region in Winter (영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석)

  • Nam, Hyoung-Gu;Kim, Yoo-Jun;Kim, Seon-Jeong;Lee, Jin-Hwa;Kim, Geon-Tea;An, Bo-Yeong;Shim, Jae-Kwan;Jeon, Gye-hak;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.237-248
    • /
    • 2018
  • The vertical distribution of hydrometeor before precipitation near the cloud base has been analyzed using a scanning lidar, rawinsonde data, and Cloud-Resolving Storm Simulator (CReSS). This study mostly focuses on 13 Desember 2016 only. The typical synoptic pattern of lake-effect snowstorm induced easterly in the Yeongdong region. Clouds generated due to high temperature difference between 850 hPa and sea surface (SST) penentrated in the Yeongdong region along with northerly and northeasterly, which eventually resulted precipitation. The cloud base height before the precipitation changed from 750 m to 1,280 m, which was in agreement with that from ceilometer at Sokcho. However, ceilometer tended to detect the cloud base 50 m ~ 100 m below strong signal of lidar backscattering coefficient. As a result, the depolarization ratio increased vertically while the backscattering coefficient decreased about 1,010 m~1,200 m above the ground. Lidar signal might be interpreted to be attenuated with the penetration depth of the cloud layer with of nonspherical hydrometeor (snow, ice cloud). An increase in backscattering signal and a decrease in depolarization ratio occured in the layer of 800 to 1,010 m, probably being associated with an increase in non-spherical particles. There seemed to be a shallow liquid layer with a low depolarization ratio (<0.1) in the layer of 850~900 m. As the altitude increases in the 680 m~850 m, the backscattering coefficient and depolarization ratio increase at the same time. In this range of height, the maximum value (0.6) is displayed. Such a result can be inferred that the nonspherical hydrometeor are distributed by a low density. At this time, the depolarization ratio and the backscattering coefficient did not increase under observed melting layer of 680 m. The lidar has a disadvantage that it is difficult for its beam to penetrate deep into clouds due to attenuation problem. However it is promising to distinguish hydrometeor morphology by utilizing the depolarization ratio and the backscattering coefficient, since its vertical high resolution (2.5 m) enable us to analyze detailed cloud microphysics. It would contribute to understanding cloud microphysics of cold clouds and snowfall when remote sensings including lidar, radar, and in-situ measurements could be timely utilized altogether.