• Title/Summary/Keyword: Optical microscope

Search Result 1,392, Processing Time 0.029 seconds

Numerical Analysis for the Image Evaluation of a Thermionic SEM (열전자형 주사전자현미경 결상특성의 수치해석)

  • Jung, H.U.;Park, M.J.;Kim, D.H.;Jang, D.Y.;Park, K.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.153-158
    • /
    • 2007
  • The present study covers numerical analysis of a thermionic scanning electron microscope(SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. For a systematic design of the electron optical system, the beam trajectories are investigated through numerical analyses by tracing the ray path of the electron beams, and the quality of resulting image is evaluated from the analysis results.

Surface profiling by the phase shifting method in fiber-optical confocal scanning interference microscopes (광섬유 공초점 간섭 현미경과 위상 변위법을 결합한 표면 검색)

  • 김대찬;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.201-207
    • /
    • 1999
  • The fiber-optical confocal scanning interference microscope with a simple configuration was constructed with a 4-port fiber-optic coupler, and the new method based on the phase shifting method was proposed for surface profiling by the system. In the method, the height of a specimen was determined from the phase of confocal beam. It was verified experimentally that the method was applicable to even the confocal interference microscope with a long-wavelength source and a low NA objective, and that the scanning time could be drastically reduced compared with the conventional method. Finally, it was found that our method is less sensitive to the variation of surface reflectivity than the conventional method.

  • PDF

Finite Element Analysis for Electron Optical System of a Field Emission SEM (전계방출 주사전자 현미경의 전자광학계 유한요소해석)

  • Park, Keun;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.

Maximizing the Workspace of Optical Tweezers

  • Hwang, Sun-Uk;Lee, Yong-Gu
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.162-172
    • /
    • 2007
  • Scanning Laser Optical Tweezers(SLOT) is an optical instrument frequently employed on a microscope with laser being delivered through its various ports. In most SLOT systems, a mechanical tilt stage with a mirror on top is used to dynamically move the laser focal point in two-dimensions. The focal point acts as a tweezing spot, trapping nearby microscopic objects. By adding a mechanical translational stage with a lens, SLOT can be expanded to work in three-dimensions. When two mechanical stages operate together, the focal point can address a closed three-dimensional volume that we call a workspace. It would be advantageous to have a large workspace since it means one can trap and work on multiple objects without interruptions, such as translating the microscope stage. However, previous studies have paid less consideration of the volumetric size of the workspace. In this paper, we propose a new method for designing a SLOT such that its workspace is maximized through optimization. The proposed method utilizes a matrix based ray tracing method and genetic algorithm(GA). To demonstrate the performance of the proposed method, experimental results are shown.

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Fluorescece Microscope using Total Internal Reflection for Measuring Biochip (내부 전반사 방식에 의한 바이오칩 측정 장비)

  • Bae, Soo-Jin;Kang, Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1694-1698
    • /
    • 2007
  • This study suggests a new fluorescence microscope to observe micro-samples within fluorophore in a variety of biomedical fields including the fluorescence analysis of a biochip, such as a DNA micro-array. A fluorescence microscope is a device for irradiating light onto a micro-object, executing an excitation and fluorescence emission process. In this study, it adopts a total internal reflection fluorescence(TIRF) method to excite a whole micro-sample substrate different from an existing way which uses an evanescent wave resulting from a total internal reflection on the micro-sample surface. Suggested TIRF microscope can reduce optical noise and obtain images with higher sensitivity thus obtain precise information about the density, quantity, location, etc. of a flurophore, and can simultaneously process separate images even when plurality of fluorophores having different excitation and fluorescent wavelength ranges is distributed, thus easily obtain information about the fluorophores.

Error Analysis and Alignment Tolerancing for Confocal Scanning Microscope using Monte Carlo Method (Monte Carlo 방법을 이용한 공초점 주사 현미경의 오차 분석과 정렬 공차 할당에 관한 연구)

  • 유홍기;강동균;이승우;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.92-99
    • /
    • 2004
  • The errors can cause the serious loss of the performance of a precision machine system. In this paper, we proposed the method of allocating the alignment tolerances of the parts and applied this method to get the optimal tolerances of a Confocal Scanning Microscope. In general, tight tolerances are required to maintain the performance of a system, but a high cost of manufacturing and assembling is required to preserve the tight tolerances. The purpose of allocating the optimal tolerances is minimizing the cost while keeping the high performance of the system. In the optimal problem, we maximized the tolerances while maintaining the performance requirements. The Monte Carlo Method, a statistical simulation method, is used in tolerance analysis. Alignment tolerances of optical components of the confocal scanning microscope are optimized to minimize the cost and to maintain the observation performance of the microscope. We can also apply this method to the other precision machine system.