• 제목/요약/키워드: Optical measurements

Search Result 1,307, Processing Time 0.034 seconds

Theoretical Considerations on Combined Optical Distance Measurements Using a Femtosecond Pulse Laser

  • Joo, Ki-Nam;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.396-400
    • /
    • 2012
  • We introduce a combined technique and the mathematical description for distance measurements using a femtosecond pulse laser in a long range and a fine resolution. For distance measurements, the maximum measurable range can be extended by combining measurement results from several different methods while requiring relationships between the different measurement uncertainties and unambiguity ranges. This paper briefly explains why the uncertainty of a rough measurement technique (RMT) should be, at least, smaller than the half unambiguity range of a fine measurement technique (FMT) in order to combine a FMT with a RMT. Further discussions about the total measurement range, resolution, and uncertainty for various optical measurement techniques are also discussed.

Estimation of Aerosol Optical Thickness over East Asia Using GMS-5 Visible Channel Measurements (GMS-5 위성의 가시자료를 이용한 동아시아 지역의 에어로솔 광학두께 추정)

  • Urm, Young-Dae;Sohn, Byung-Ju
    • Atmosphere
    • /
    • v.15 no.4
    • /
    • pp.203-211
    • /
    • 2005
  • One algorithm has been developed for retrieving aerosol optical thickness from GMS-5 visible channel measurements, and then the algorithm was applied for obtaining the geographical distribution of aerosol optical thickness over East Asia during April 2002. Algorithm employs a look-up table based upon radiative transfer calculations with solar geometry, aerosol optical thickness, and surface albedo as inputs. Validation was conducted by comparing retrieved aerosol optical thickness with measured values from ground-based sky radiation measurements at Anmyon Do, Korea. It was found that the correlation coefficient is 0.71 with -0.03 of bias and 0.34 of root mean square error, suggesting that the algorithm developed in this study can be used for estimating aerosol optical thickness in a quantitative sense.

Nonlinear characteristics of photodetectors for optical fiber power measurements (광섬유 출력 측정용 광검출기의 비선형성 평가 연구)

  • 이덕희;류지욱;서정철
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.321-324
    • /
    • 2004
  • We have composed an experimental system using the superposition method to measure the nonlinearity of photodetectors for optical fiber power measurements. Also we have measured the nonlinearity of a high power detector and of a low power detector. The two detectors have shown good linearity within 0.01% and 0.02%, respectively, in the 50 ㏈ dynamic range. These detectors are used as reference detectors in optical fiber characteristics measurements.

Roughness Measurement Performance Obtained with Optical Interferometry and Stylus Method

  • Rhee Hyug-Gyo;Lee Yun-Woo;Lee In-Won;Vorburger Theodore V.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.48-54
    • /
    • 2006
  • White-light scanning interferometry (WLI) and phase shifting interferometry (PSI) are increasingly used for surface topography measurements, particularly for areal measurements. In this paper, we compare surface profiling results obtained from above two optical methods with those obtained from stylus instruments. For moderately rough surfaces ($Ra{\approx}500\;nm$), roughness measurements obtained with WLI and the stylus method seem to provide close agreement on the same roughness samples. For surface roughness measurements in the 50 nm to 300 nm range of Ra, discrepancies between WLI and the stylus method are observed. In some cases the discrepancy is as large as 109% of the value obtained with the stylus method. By contrast, the PSI results are in good agreement with those of the stylus technique.

Spatial Characterization of MAC, a High-Resolution Optical Earth Observation Camera for Small Satellites

  • Kim Eugene D.;Choi Young-Wan;Yang Ho-Soon;Ismail Mohd. Afiq bin
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.79-83
    • /
    • 2005
  • Spatial calibrations have been performed on the Medium-sized Aperture Camera (MAC) of the RazakSAT satellite. Topics discussed in this paper include the measurements of system modulation transfer function (MTF), relative pixel line-of-sight (LOS), and end-to-end imaging tests. The MTF measurements were made by capturing the scanned knife-edge image on a pixel, and an issue in the MTF calculation algorithm is discussed. The method used to place the focal plane at the correct focal position is described, since they make use of MTF measurements. Relative LOS measurements are done by theodolite measurements of the telescope. Qualitative ground test result of end-to-end imaging is given.

Location of Sampling Points in Optical Reflectance Measurements of Chinese Cabbage and Kale Leaves

  • Ngo, Viet-Duc;Kang, Sin-Woo;Ryu, Dong-Ki;Chung, Sun-Ok;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.115-123
    • /
    • 2015
  • Purpose: A sampling scheme may significantly affect the accuracy of a sensor. This study was conducted to investigate the effects of sampling point locations on optical reflectance measurements of Chinese cabbage and kale plant leaves. Methods: Variability and similarity of multiple measurements for different parts of the leaves were compared. Results: The results indicate that the variability between the average and individual reflectance spectra was smaller for the blade part than for the vein part. Furthermore, the reflectance for the blade part over the upper leaf area was greater and more stable than those for the other parts for both the cabbage and kale leaf samples. Conclusions: The results provide guidelines for optical reflectance measurements of Chinese cabbage and kale plants. The effects of the number of sampling points, the number of leaves, and the relationships between optical reflectance and leaf components remain to be investigated in the future.

Investigations on the Measurements of the Recording State of Optical Discs as a Electronic Recording Device (전자 기록 매체인 광디스크의 기록 상태 측정 연구)

  • Yoon, Man-Young;Yang, Jun-Seock
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.77-88
    • /
    • 2012
  • In this report, we performed the measurements of physical properties of optical discs as a long term preservation electronic recording device and showed how to improve the preservation method of them. We collect the 1,993 optical discs from the archives of the National Archives of Korea and tested various measurements. We used DVDT-SD4 equipment to measure the quality of data, deformation of disc, the various writing strategy and manufacturer derives, which can be happened in optical discs by physical factors. We found that th quality of data are closely related with write strategy between discs and drives. This relation gives us information about data quality in optical discs for long term preservation that can be obtained from the state between empty discs and optical drives before recording. Thus, the initial selection of optimal discs and drives is critical for long term recording data preservation and the data quality after long time preservation will not be much different from that of the initial ones.

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.