• 제목/요약/키워드: Optical concentration

검색결과 1,423건 처리시간 0.03초

Optical Stimulation and Pacing of the Embryonic Chicken Heart via Thulium Laser Irradiation

  • Chung, Hong;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Optical stimulation provides a promising alternative to electrical stimulation to selectively modulate tissue. However, developing noninvasive techniques to directly stimulate excitable tissue without introducing genetic modifications and minimizing cellular stress remains an ongoing challenge. Infrared (IR) light has been used to achieve optical pacing for electrophysiological studies in embryonic quail and mammalian hearts. Here, we demonstrate optical stimulation and pacing of the embryonic chicken heart using a pulsed infrared thulium laser with a wavelength of 1927 nm. By recording stereomicroscope outputs and quantifying heart rates and movements through video processing, we found that heart rate increases instantly following irradiation with a large spot size and high radiant exposure. Targeting the atrium using a smaller spot size and lower radiant exposure achieved pacing, as the heart rate synchronized with the laser to 2 Hz. This study demonstrates the viability of using the 1927 nm thulium laser for cardiac stimulation and optical pacing, expanding the optical parameters and IR lasers that can be used to modulate cardiac dynamics.

QUANTITATIVE MONITORING OF TISSUE OXYGENATION BY TIME-RESOLVED SPECTROSCOPY

  • Yamashita, Yutaka;Oda, Motoki;Ohmae, Etsuko;Tsuchiya, Yutaka
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.2101-2101
    • /
    • 2001
  • Near-infrared spectroscopy is now being used in clinical diagnosis as a non-invasive monitor of tissue oxygenation state. However, due to lack of the optical pathlength information within tissues, it is still difficult to quantitate the hemoglobin concentration with present CW techniques. Time-resolved spectroscopy (TRS), which measures temporal profiles of emerging light from tissues, enables to estimate the pathlength distribution within tissues by converting time to distance. Consequently, quantitative measurement of tissue oxygenation is possible by analyzing the data with optical diffusion equation 1) or our Microscopic Beer-Lambert law2). Time-Resolved Spectroscopy System : TRS-1O3) Our TRS-10 system consists of a three-wavelength (759, 797, 833 nm) PLP as pulsed light source, a high speed PMT with high sensitivity and three signal-processing circuits for time-resolved measurement (CFD/TAC, A/D converter and histogram memory). Optical pulse train consisting of 759, 797 and 833nm is generated by PLP at 5㎒ repetition rate and irradiated a sample through a single optical fiber. The diffuse-reflected light from the sample is collected by a bundle fiber and then detected by the PMT for single photon measurement. After being amplified by a following fast amplifier, the electrical signals for each wavelength are picked out by CFD/TAC module. Then, a signal processing circuit integrated the TRS data for each wavelength individually. The simultaneous TRS measurement for three wavelengths achieved without any optical or mechanical switch. Experiment and Results Input and detection fibers of TRS-10 were attached at the human forehead with a fiber separation of 3cm. TRS measurements were continuously performed for about 20 minutes including 2 minutes hyper ventilation. It was observed that the total hemoglobin concentration was decreasing during the hyper ventilation and recovered until 2 minutes after hyper ventilation. On the other hand, the deoxy-hemoglobin concentration began to increase after hyper ventilation and had its peak at around 2 minute later, showing 502 drop from 75% to 60% due to inhibition of breathing by performing hyper ventilation. The results showed that this system might be able to quantitate the concentrations of oxy- and deoxy-hemoglobin in the human brain.

  • PDF

4.3 μm 파장 Optical Band-Pass Filter의 제작과 CO2 감도 특성 (Fabrication and CO2-sensing Characteristics of Optical Band-Pass Filter for 4.3 CO2 Wavelength)

  • 이상훈;김수현;김광호
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.210-215
    • /
    • 2002
  • 본 연구에서는 $CO_2$ 흡수단이 있는 4.3${\mu}m$ 파장대역의 광학 필터를 전자빔 증발 장치를 이용하여 Ge와 $SiO_2$ 박막을 다층으로 설계, 제작하였다. 제작된 Ge/$SiO_2$ 다층박막 필터는 기준파장에 대하여 반가폭(FWHM) 204nm, 투과율 58.2%, 금지대역에 대하여 5% 이하의 차단특성을 나타내는 협대역 투과필터 (narrow band-pass filter: BPF)특성을 나타내었다. 광학적 대역투과필터를 사용하여, FT-IR내에 감지실을 설치하여 단식 필터(KBr+BPF)와 복식필터(BPF+BPF)의 $CO_2$ 농도별 감도특성을 비교측정 하였다. 측정시 $CO_2$의 농도는 500ppm을 단위로 500∼5000ppm의 범위까지 관찰하였는데, 복식 필터는 단식 필터에 비해 투과율이 낮았지만, 우수한 감도 특성을 보였다.

회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구 (A Study on the Fracture Phenomena in Optical Disks due to Increase of the Rotating Speed)

  • 조은형;박준민;서영선;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.339-344
    • /
    • 2000
  • In this study, the fracture phenomena of optical disks are discussed and then some recommendations are presented to prevent the fracture. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks, which are robust to the disk fracture due to the high spinning speed of a disk. The first type is a disk reinforced by wire rings, the second type is a disk added by texture fibers, and the third type is a rubber-coated disk.

  • PDF

A Method for the Measurement of Methane Gas Based on Multi-beam Interferometry

  • Ye, Jiansen;Li, Zhuo
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.481-485
    • /
    • 2013
  • A method for the measurement of the concentration of methane is experimentally demonstrated. The wavelength filter and gas cell are combined by using one Fabry-Perot etalon, which is filmed with the reflectivity of 96%. The optical broadband source is not only filtered to match the absorption wavelength of methane, but also absorbed by the methane in the same Fabry-Perot etalon. The concentration of the methane can be detected directly by measuring the transmission intensity. Compared with the conventional method, the proposed method possesses low costand high stability.

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan;Koo, Chang-Young;Ma, Hong-Chan;Lee, Hee-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.241-244
    • /
    • 2012
  • Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.

Pr3+ 도핑된 셀레나이드 유리의 테라헤르츠 광학 특성 (THz Optical Properties of Pr3+-Doped Selenide Glasses)

  • 강승범;정동철;곽민환
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.745-750
    • /
    • 2017
  • Terahertz time-domain spectroscopy has been used to study the optical properties of $Pr^{3+}-doped$ selenide glasses. The complex refractive indexes of $Pr^{3+}-selenide$ glasses were measured in a frequency range from 0.3 to 1.5 THz. The real and imaginary refractive indexes increased with increasing frequency and $Pr^{3+}$ ion concentration. The obtained result indicated that the phonon modes of the $Pr^{3+}-doped$ selenide glasses shift to lower frequencies with the concentration of $Pr^{3+}$ ions. The theory of far-infrared absorption in amorphous materials was used to analyze the results. The measured data showed that the disorder-induced terahertz absorption increased with increasing $Pr^{3+}$ ion concentration.

Effect of Clay Type and Concentration on Optical, Tensile and Water Vapor Barrier Properties of Soy Protein Isolate/Clay Nanocomposite Films

  • Rhim, Jong-Whan
    • 한국포장학회지
    • /
    • 제15권3호
    • /
    • pp.99-104
    • /
    • 2009
  • Soy protein isolate (SPI)-based nanocomposite films with three different types of nanoclays, such as Cloisite $Na^+$, Cloisite 20A, and Cloisite 30B, were prepared using a solution casting method, and their optical, tensile, and water vapor barrier properties were determined to investigate the effect of nano-clay type on film properties. Among the tested nanoclays, Cloisite $Na^+$, a hydrophilic montmorillonite (MMT), exhibited the highest transparency with least opaqueness, the highest tensile strength, and the highest water vapor barrier properties, indicating Cloisite $Na^+$ is the most compatible with SPI polymer matrix to form nanocomposite films. The film properties of SPI/Cloisite $Na^+$ nanocomposite films were strongly dependent on the concentration of the clay. Film properties such as optical, tensile, and water vapor barrier properties improved significantly (p<0.05) as the concentration of clay increased. However, the effectiveness of addition of the clay reduced above a certain level (i.e., 5wt%), indicating that there is an optimum amount of clay addition to exploit the full advantage of nanocmposite films.

  • PDF

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

수열합성에 의한 c축 배향 ZnO 나노로드 배열의 성장과 구조, 광학적 특성 (Growth, Structural and Optical Properties of c-axis Oriented ZnO Nanorods Array by Hydrothermal Method)

  • 김경범;김창일;정영훈;이영진;백종후
    • 한국전기전자재료학회논문지
    • /
    • 제23권3호
    • /
    • pp.222-227
    • /
    • 2010
  • ZnO nanorods array have been grown on the seed crystal coated Si(100) substrate by hydrothermal method. The growth, structural and optical properties of ZnO nanorods array were investigated with a variation of precursor concentration from 0.01 M to 0.04 M. The array density of grown ZnO nanorods per same area was increased with increasing the concentration of precursor solution. Vertically aligned ZnO nanorods with hexagonal wurtzite structure have highly preferred c-axis orientation along (002) lattice plane. Especially, ZnO nanorods array developed from 0.04 M precursor solution showed a diameter of about 85 nm and length of 1.2 {\mu}m$ without any crystallographic defects. The photoluminescence spectra of ZnO nanorods from heavier precursor concentration exhibited stronger UV emission around 380 nm corresponding with near-band-edge emission.