• Title/Summary/Keyword: Optical aberrations

Search Result 135, Processing Time 0.038 seconds

Design of a Tele-centric Wide Field Lens with High Relative Illumination and Low Distortion Using Third-order Aberration Analysis

  • Kim, Kae-Hong;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.679-686
    • /
    • 2015
  • This paper presents a design method for improving the low relative illumination and large distortion due to widening the field of a system. A tele-centric optical system in image space was suggested to increase the relative illumination. Through the analyses of the third-order aberrations affected by introducing aspherical surfaces, we have proposed a method to determine analytically what surface should be aspheric to correct each aberration effectively. By utilizing this method to design a wide field lens, a tele-centric wide field lens with f-number of F/2.0 was obtained. Even though the field angle is 120 degrees, it has a very low distortion less than -2% and high relative illumination more than 73.7%. In conclusion, this analytic method for selecting aspherical surfaces is expected to serve as a useful way to find design solutions.

Development of 3X Scope with Objective Configured with Doublet+Meniscus Lens (더블렛+메니스커스렌즈 대물부를 가지는 3X 스코프 개발)

  • Lee, Dong-Hee;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.487-492
    • /
    • 2014
  • Purpose: This study relates to the development of the 3X scope, whose objective part is configured with a doublet + a meniscus lens. Methods: By the initial condition of the objective part having a configuration of a doublet + a singlet, we could optimize the optical system of scope in order to minimize the finite ray aberrations of the objective part and the whole optical system of scope, and so we could develope a new type 3X scope. Results: On the condition of the objective part having a configuration of a doublet + a singlet, when the optical system of scope was optimized in order to minimize the finite ray aberrations, we could find that the singlet became the meniscus type lens having the concave shape to the direction of the doublet, and the longer the distance between the doublet and the meniscus lens is, the more the finite ray aberrations are minimized. Conclusions: In this study, we could develope a new type 3X scope of which finite ray aberrations can be reduced to 1/14 than the existing scope by adopting the objective part of the 3X scope having a configuration of three lenses composed of a doublet + a singlet. We could confirm that this reduction of aberrations can be a means to increase the effective aperture than the existing scope and to shorten the length of the optical system.

Distortion Compensation of Reconstructed Hologram Image in Digital Holographic Display Based on Viewing Window

  • Park, Minsik;Kim, Hyun-Eui;Choo, Hyon-Gon;Kim, Jinwoong;Park, Cheong Hee
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.480-492
    • /
    • 2017
  • A holographic display based on a viewing window enables the converging of a reconstruction wave into a viewing window by means of an optical system. Accordingly, a user can observe a reconstructed hologram image, even with a small diffraction angle. It is very difficult to manufacture an optical system with no aberrations; thus, it is inevitable that a certain amount of wave aberrations will exist. A viewing-window-based holographic display, therefore, always includes distortions in an image reconstructed from a hologram pattern. Compensating the distortions of a reconstructed image is a very important technical issue because it can dramatically improve the performance when reconstructing a digital three-dimensional content image from a hologram pattern. We therefore propose a method for suppressing image distortion by measuring and compensating the wave aberration calculated from a Zernike polynomial, which can represent arbitrary wave aberrations. Through our experimental configuration using only numerical calculations, our proposed method decreased the reconstructed image distortion by more than 28%.

Compact Zoom Lens Design for a 5x Mobile Camera Using Prism

  • Park, Sung-Chan;Lee, Sang-Hun;Kim, Jong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.206-212
    • /
    • 2009
  • This study presents the compact zoom lens with a zoom ratio of 5x for a mobile camera by using a prism. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.4 to 22.0 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. We separately designed a real lens for each group and then combined them to establish an actual zoom system. The combination of the separately designed groups results in a system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a more compact zoom system with a depth of 8 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a slim mobile zoom camera having high zoom ratio of 5x.

Holosymmetric 4-Mirror Optical System(Unit Maginification) for Deep Ultraviolet Lithography Obtained from the Exact Solution of All Zero Third Order Aberrations (모든 3차 수차를 제거하여 얻은 극자외선 Lithography용 4-반사경 Holosymmetric System(배율=1))

  • 조영민
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.252-259
    • /
    • 1993
  • A holosymmetric four-mirror system with unit magnification is designed for use in the micro-lithography using a deep ultraviolet wavelength of $0.248 {\mu}m$(KrF excimer laser line). In the holosymmetric system all orders of coma and distortion are zero. By applying this principle to the 4-spherical mirror system, we have obtained only one exact solution for the unit magnification holosymmetric four-spherical mirror system with all zero third order aberrations. For correction of the residual higher order aberrations of the system, aspherization is introduced keeping the holosymmetric properties. We have obtained near diffraction-limited performance for the wavelength of 0.248 pm within N.A. of 0.33 and image field diameter of 7.6 mm.

  • PDF

Zoom Lens Design for a 10x Slim Camera using Successive Procedures

  • Park, Sung-Chan;Lee, Sang-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.518-524
    • /
    • 2013
  • This study presents a new design method for a zoom lens, in which real lens groups are designed successively to combine to form a lens modules zoom system. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.2 to 39.9 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. After obtaining the lens module zoom system, the real lens groups are successively, not separately, designed to get a zoom lens system. Compared to the separately designed real lens groups, this approach can give a better starting zoom lens and save time. The successively designed groups result in a zoom system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a compact zoom system with a depth of 12 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a mobile zoom camera having high zoom ratio of 10x.

Simulation of Lens Aberration Correction for Polygon Mirror Scanning (PMS) (Polygon Mirror Scanning (OMS)을 위한 렌즈의 구면 수차 보정 시뮬레이션)

  • 신승연
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.128-129
    • /
    • 1999
  • Polygon Mirror Scanning(PMS) is composed of LED array, magnifying lens, polygon mirror and motor. It is important to correct the lens aberrations to gain the image we want to show. In this paper, we have simulated the lens aberration correction to reduce the spherical aberration . We have obtained a aspherical lens which is corrected the spherical aberration.

  • PDF

Compact Optical Systems for Space Applications

  • Biryuchinskiy, Sergey;Churayeu, Siarhei;Jeong, Yeuncheol
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.104-120
    • /
    • 2021
  • Some optical schemes of lenses for spacecraft developed by the author are considered. The main optical characteristics of telescope lenses of various architectures are compared. We propose compact solutions of mirror, lens-mirror, and lens systems with maximum available angular resolutions and other parameters. Examples of calculating the optical systems of lenses used for various tasks both in the field of astronomy and in the field of remote sensing of the Earth and other planets are given. The example of onboard computer system is discussed. Practical recommendations on the development and use of telescope lenses are given.