• 제목/요약/키워드: Optical Zoom

Search Result 127, Processing Time 0.021 seconds

Convergence Point Adjustment Improving Visual Discomfort for a Zoom on a Stereoscopic Camera

  • Ha, Jong Soo;Kim, Dae Woong;Kim, Dong Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.633-640
    • /
    • 2016
  • In a dual lens stereoscopic camera, a convergence point determines the stereopsis effects of a video. When a user zooms an object, a convergence point is fixed since it is not coupled with a zoom function. Due to the fixed convergence point, it is possible for a zoom to cause the excessive binocular disparity resulting in visual discomfort. In this paper, to solve this problem, we build the relational model including all phenomena possible to arise and propose the adjustment methods of a convergence point by the positions of a focus, an object and a convergence point. We also evaluate the experiments measuring a binocular disparity and the subjective test to investigate the visual comfort. The results show that one of the proposed methods produced more comfortable 3D images to viewers than the others.

Zoom-in - (주)싸이펨

  • 한국광학기기산업협회
    • The Optical Journal
    • /
    • s.174
    • /
    • pp.22-23
    • /
    • 2019
  • Optical Simulation World - 파동광학과 RSoft에 대해 알아보자.

  • PDF

The Aspheric Analysis through the Optical Capacity of 35mm Camera with an Aspheric Zoom Lens System (35mm 카메라 비구면 줌 렌즈계의 광학적 성능을 통한 비구면 분석)

  • Ji, Taek Sang;Lim, Hyeon Seon;Kim, Bong Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • We analyzed aspheric patterns after we investigated zoom lens' constructions and optical capacities of a ordinary designed 35mm camera with an aspheric zoom lens system in this research. As this lens system was the zoom lens system about infinite object point, it was made to get a short back focal length, be able to use a lens unit more close to the image plane, and be used the compact camera which got a viewing system. The zoom ratio of the system was 1 : 2 and it got a positive and negative power's distribution. As it was determined the 35~70 mm focal length range which the most common people used, it might be called economic optical system considered universality. As it was used two aspheric surface, it was used just three lens, compensated the aberration and schemed lens' miniaturization, lightweightization, and the decrease effect of the unit cost of production.

  • PDF

Design of 4:1 I$\mathbb{R}$ zoom afocal telescope (원적외선 대역 4 : 1 줌 망원경 광학계 설계)

  • 김현숙;김창우;홍석민
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1998
  • A high performance afocal zoom telescope has been designed to operate in the 7.6${\mu}{\textrm}{m}$ to 10.3${\mu}{\textrm}{m}$ waveband for thermal imaging system. This IR zoom telescope is characterized by using of two movable optical element groups, variator and compensator, with mechanically compensated method and the positioning of these groups is controlled by means of a computerized program. The optical performance over the entire 4:1 zoom range and $\pm$2.31~$\pm$9.36 degrees field of view is near diffraction limit while maintaining a constant F-number. The all refracting surfaces of this system except only one aspheric surface are spherical curvature and the material for the optical elements is selected Ge and ZnSe which is used for correction of chromatic aberration.

  • PDF

Optical Design of a Zoom Eyepiece (Zoom접안경에 대한 광설계)

  • 임천석;이상수;박충선;김재순
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.356-363
    • /
    • 1994
  • By Gaussian optics, a zoom eyepiece is analyzed, which has the diameter of exit pupil 0.5 em, eyerelief 1 em, and angular magnification $M_a=7~15$. The initial design is based on this analysis. Telescope objective which was previously designed has focal length($(f_u')$ 21.0 em, and its clear aperture is 6.2 em. Zoom telescope has half field angle $\beta=1.5^{\circ}$ at the entrance pupil and at exit pupil it is $\beta'=1.5^{\circ}\times(7~15)=10.5^{\circ}~22.5^{\circ}$. Zoom eyepiece consists of three groups, of which each one satisfies the Seidel 3,d order aplanatization. Final design is obtained by optimization for the finite ray aberration, and the zoom eyepiece is assessed on the basis of the resolution of eyes.f eyes.

  • PDF

Optical Properties Correction of a Heterogeneous Stereoscopic Camera (이종 입체 영상 카메라의 광학 특성 일치화)

  • Jung, Eun Kyung;Baek, Seung-Hae;Park, Soon-Yong;Jang, Ho-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.74-85
    • /
    • 2012
  • In this paper, we propose a optical property correction technique for a low-cost heterogeneous stereoscopic camera. Three main optical properties of a stereoscopic camera are zoom, focus, and DOF(depth of field). The difference or mis-match of these properties between two stereoscopic videos are the main causes of the visual fatigue to human eyes. The proposed correction technique reduces the difference of the optical properties between the stereoscopic videos and produces high-quality stereoscopic videos. To correct the zoom difference, a LUT(look-up table) is established to match the zoom ratio between the stereoscopic videos. To correct the DOF difference, the magnitude of image edge is measured and the lens iris is changed to control the DOF of the camera. A vertical-type stereoscopic rig is developed for the experiments of the optical property correction. Based on the experimental results, we find that a low-cost heterogeneous stereoscopic camera can be implemented, which can yield low visual fatigue to human eyes.

Optical system design using lens modules I:optimum first order design in zoom lens (렌즈모듈을 이용한 광학계 설계 I: 줌렌즈의 First Order 최적설계)

  • 박성찬;김영식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • This paper presents the optimum initial design containing the first and third order properties of the four-group video camera zoom system using lens modules, and its real lens design. The optimum initial design with focal length range of 6.1693 to 58.4065 mm is derived by assigning appropriate first order quantities and third order aberrations to each module along with the specific constraints required for optimization. By scaling the focal length of each lens group, an initial real lens selected for each group has been designed to match its focal length into that of the each lens module, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system consisting of original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in video zoom camera employing the rear focus method.

  • PDF