• Title/Summary/Keyword: Optical Position Sensor

Search Result 164, Processing Time 0.038 seconds

Calibration Mirror Mechanism with Fail-Safe Function (결함안전 기능을 고려한 교정 반사경 구동장치)

  • Lee, Kyong-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.682-687
    • /
    • 2011
  • Calibration mirror mechanism has been widely used for on-board calibration with black body. The calibration mirror is deployed to reflect the radiation energy from the black body to the image sensor for calibrating the sensor system. After the calibration, the calibration mirror is stowed not to hide a main optical path. It also has a fail-safe function which can stow the mirror by just removing the input power of motor when the calibration mirror is stopped at certain position during the calibration. In the present work, the operation concept, design, torque analysis and functional test results of the calibration mirror mechanism with the aforementioned function have been introduced and investigated.

A Study of the Shaft Power Measuring System Using Cameras (카메라를 이용한 축계 비틀림 계측 장치 개발)

  • Jeong, Jeong-Soon;Kim, Young-Bok;Choi, Myung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.72-77
    • /
    • 2010
  • This paper presents a method for measuring the shaft power of a marine main engine. Usually, in traditional systems for measuring shaft power, a strain gauge is used even though it has several disadvantages. First, it is difficult to set up the strain gauge on the shaft and acquire the correct signal for analysis. Second, it is very expensive and complicated. For these reasons, we investigated alternative approaches for measuring shaft power and proposed a new method that uses a vision-based measurement system. For this study, templates for image processing and CCD cameras were installed at the both ends of the shaft. Then, in order for the cameras to capture the images synchronously, we used a trigger mark and a optical sensor. The position of each template between the first and the second camera images were compared to calculate the torsion angle. The proposed measurement system can be installed more easily than traditional measurement systems and is suitable for any shaft because it does not contact the shaft. With this approach, it is possible to measure the shaft power while a ship is operating.

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

Grinding robot system for car brazing bead

  • Kang, Hyo-Sik;Lee, Woo-Ho;Park, Jong-Oh;Lee, Gwang-Se;Shin, Hyoun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.160-163
    • /
    • 1993
  • In this paper, design of an automatic grinding robot system for car brazing bead is introduced. Car roof and side panels are joined using brazing, and then the brazing bead is processed so that the bead is invisible after painting. Up to now the grinding process is accomplished manually. The difficulties in automation of the grinding process are induced by variation of position and shape of the bead and non-uniformity of the grinding area due to surface deformation. For each car, the grinding area including the brazing bead is sensed and then modeled using a 2-D optical sensor system. Using these model data, the position and the direction of discrete points on the car, body surface are obtained to produce grinding path for a 6 degrees of freedom grinding robot. During the process, it is necessary to sense the reaction forces continuously to prepare for the unexpected circumstances. In addition, to meet the line cycle time it is necessary to reduce the required time in sensing, signal processing, modeling, path planning and data transfer by utilizing real-time communication of the information. The key technique in the communication and integration of the complex information is obtaining in-field reliability. This automatic grinding robot system may be regarded as a jump in the intelligent robot processing technique.

  • PDF

Position Estimation for the Permanent Magnet Spherical Motor using Optical Image Sensor (이미지 센서를 이용한 영구자석 구형모터의 위치 추정)

  • Oh, Ye-Jun;Lee, Won-Kook;Lee, Ho-Jun;Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.943-944
    • /
    • 2011
  • The position of the rotor in a spherical motor is usually measured by encoders. When using a encoder, It is possible to measure the angle in a very high resolution. However it is limited to measure a single-DOF using one encoder. So it is required to use 3 encoders to measure a 3-DOF. In order to connect the encoder and the motor, an additional mechanic linkages. Because of these reasons, it is difficult to apply it in various systems. Where the friction and inertia is increased when operating the motor. It could cause a negative effect in dynamic characteristic. In this paper present dual-image sensing system capable of measuring 3-DOF motions in real time eliminating the mechanical linkages. In addition we offer methods of converting sensors outputs to rotation angle which is used in the controller.

  • PDF

Shock-Wave Oscillation in a Supersonic Diffuser -Displacement Measurement of Mormal Shock-Wave- (초음속 디퓨져에서 충격파의 진동 (1) -수직충격파의 순간변위 측정-)

  • 김희동;엄용균;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.933-945
    • /
    • 1994
  • A shock-wave in a supersonic flow can be theoretically determined by a given pressure ratio at upstream and downstream flowfields, and then the obtained shock-wave is stable in its position. Under the practical situation in which the shock-wave interacts with the boundary layer along a solid wall, it cannot, however, be stable even for the given pressure ratio being independent of time and oscillates around a time-mean position. In the present study, oscillations of a weak normal shock-wave in a supersonic diffuser were measured by a Line Image Sensor(LIS), and they were compared with the data of the wall pressure fluctuations at the foot of the shock-wave interacting with the wall boundary layer. LIS was incorporated into a conventional schlieren optical system and its signal, instantaneous displacement of the interacting shock-wave, was analyzed by a statistical method. The results show that the displacement of an oscillating shock-wave increase with the upstream Mach number and the dominant frequency components of the oscillating shock-wave are below 200 Hz. Measurements indicated that shock-wave oscillations may not entirely be caused by the boundary layer separation. The statistical properties of oscillations appeared, however, to be significantly affected by shock-induced separation of turbulent boundary layer.

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

A Study on Seam Tracking and Weld Defects Detecting for Automated Pipe Welding by Using Double Vision Sensors (파이프 용접에서 다중 시각센서를 이용한 용접선 추적 및 용접결함 측정에 관한 연구)

  • 송형진;이승기;강윤희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • At present. welding of most pipes with large diameter is carried out by the manual process. Automation of the welding process is necessary f3r the sake of consistent weld quality and improvement in productivity. In this study, two vision sensors, based on the optical triangulation, were used to obtain the information for seam tracking and detecting the weld defects. Through utilization of the vision sensors, noises were removed, images and 3D information obtained and positions of the feature points detected. The aforementioned process provided the seam and leg position data, calculated the magnitude of the gap, fillet area and leg length and judged the weld defects by ISO 5817. Noises in the images were removed by using the gradient values of the laser stripe's coordinates and various feature points were detected by using an algorithm based on the iterative polygon approximation method. Since the process time is very important, all the aforementioned processes should be conducted during welding.

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.