• 제목/요약/키워드: Optical Observation

검색결과 756건 처리시간 0.047초

효과분석 시뮬레이션을 이용한 미지 우주물체 광학 추적 시스템 설계 변수 조합 분석 (Combination Analysis of Optical Tracking System Design Variables for Unknown Space Objects Using Effectiveness Analysis Simulation)

  • 현철;이상욱;이호진;박승욱
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1312-1319
    • /
    • 2022
  • 본 논문은 미지 우주물체에 대한 광학 연속 관측을 위한 효과 척도를 정의하고, 통합 시뮬레이션 수행을 이용하여 망원경/마운트 제어 시스템 관점에서 효과 척도를 만족할 수 있는 설계 변수 조합 범위를 제시하였다. 표적의 위치 예측과 함께 프레임률, 영상처리 소요시간과 측정 오차, 표적 궤적특성 및 마운트 김발의 기동성능 등의 설계 변수를 고려하여 전체적인 시스템 수준에서의 시뮬레이션을 구현하고 추적 성능을 분석하였다. 분석 결과 광학 관측 시스템의 연속 추적 성능은 프레임률과 마운트 기동성능의 조합에 의존적임을 확인할 수 있었다. 광학 관측 시스템을 설계하거나 상용 제품을 구입하여 유사 시스템을 구성할 때, 본 연구와 같이 효과분석 시뮬레이션을 이용하면 설계 변수들 사이의 적절한 요소 조합을 찾을 수 있을 것이다.

Design of an Elliptical Orbit for High-Resolution Optical Observation at a Very Low Altitude over the Korean Peninsula

  • Dongwoo Kim;Taejin Chung
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권1호
    • /
    • pp.35-44
    • /
    • 2023
  • Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56°. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.

일본의 광학탑재체(지상/해양 관측용) 개발 경향 (Development Trend of Japanese Optical Payloads)

  • 명환춘
    • 항공우주산업기술동향
    • /
    • 제8권2호
    • /
    • pp.65-75
    • /
    • 2010
  • 일본은 향후 2014년으로 발사가 예정되어 있는 GCOM-C를 이용하여 지구 복사량 및 탄소의 변화량, 해색정보, 에어로졸 분포 등을 측정할 계획을 추진 중이다. 특히, GCOM-C에는 SGLI-VNR과 SGLI-IRS로 구성되어 있는 SGLI를 탑재하고 있으며, 각각 가시영역/근적외영역과 적외영역의 영상을 측정하도록 설계될 예정이다. SGLI는 최신 성능을 갖춘 설계부분과 함께 기본적인 기능 및 구조 등은 지금까지 일본에서 개발되어진 여러 광학 탑재체들의 개발기술들을 바탕으로 구현됨으로써, 개발위험을 최소화 하는 전략을 취하고 있다. 본 논문에서는 지금까지 일본이 개발한 여러 광학 탑재체들의 특성들을 채널별(가시영역/근적외영역과 적외영역)로 비교 및 검토하면서, 향후 개발 완료될 SGLI의 특성을 이해하고 일본의 광학탑재체 개발 경향에 대한 분석을 수행하고자 한다.

  • PDF

Optical Design of CubeSat Reflecting Telescope

  • Jin, Ho;Pak, Soojong;Kim, Sanghyuk;Kim, Youngju
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.110.1-110.1
    • /
    • 2014
  • The optics of Space telescope is one of the major parts of space mission used for imaging observation of astronomical targets and the Earth. These kinds of space mission have a bulky and complex opto-mechanics with a long optical tube, but there are attempts have been made to observe a target with a small satellite in many ways. In this paper, we describe an optical design of a reflecting telescope for use in a CubeSat mission. For this design, we adopt the off-axis segmented method of astronomical observation techniques based on the Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and a secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can obtain a $0.3{\times}0.2$ degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation. Based on this conceptual design, we will keep trying to study more for astronomical observation with Attitude control system.

  • PDF

A Study on the Strategies of the Positioning of a Satellite on Observed Images by the Astronomical Telescope and the Observation and Initial Orbit Determination of Unidentified Space Objects

  • Choi, Jin;Jo, Jung-Hyun;Choi, Young-Jun;Cho, Gi-In;Kim, Jae-Hyuk;Bae, Young-Ho;Yim, Hong-Suh;Moon, Hong-Kyu;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권4호
    • /
    • pp.333-344
    • /
    • 2011
  • An optical tracking system has advantages for observing geostationary earth orbit (GEO) satellites relatively over other types of observation system. Regular surveying for unidentified space objects with the optical tracking system can be an early warning tool for the safety of five Korean active GEO satellites. Two strategies of positioning on the observed image of Communication, Ocean and Meteorological Satellite 1 are tested and compared. Photometric method has a half root mean square error against streak method. Also eccentricity method for initial orbit determination (IOD) is tested with simulation data and real observation data. Under 10 minutes observation time interval, eccentricity method shows relatively better IOD results than the other time interval. For follow-up observation of unidentified space objects, at least two consecutive observations are needed in 5 minutes to determine orbit for geosynchronous orbit space objects.

보현산 천문대의 대기 소광계수 (DETERMINATION OF ATMOSPHERIC EXTINCTION COEFFICIENT AT BOHYUNSAN OPTICAL ASTRONOMY OBSERVATORY)

  • 김강민;손동훈;형식;윤태석
    • 천문학논총
    • /
    • 제12권1호
    • /
    • pp.167-172
    • /
    • 1997
  • Detailed low spectral resolution observations of the spectrum have been made for three early spectral type standard stars, HR718, HR1544, HR3454, respectively, for the wavelength region 4,300 A to 7,500 A, using the Bohyunsan Optical Astronomy Observatory (BOAO) Middle- Dispersion Spectrograph. These standard stars were chosen from well-known bright northern standard stars. All of the observed long slit spectral data has been reduced and analyzed using the IRAF reduction procedure. The derived extinction coefficients are compared with the other observatory result. The derived value can be used in the determination of flux calibration of BOAO spectroscopic observation. However, until the high quality data are secured from a new series of observation in the blue region and are re-analyzed together, the extinction coefficients below the 4,000 A wavelength remains unknown.

  • PDF

A 3-axis Focus Mechanism of Small Satellite Camera Using Friction-Inertia Piezoelectric Actuators

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • International Journal of Aerospace System Engineering
    • /
    • 제5권2호
    • /
    • pp.8-15
    • /
    • 2018
  • For small earth observation satellites, alignment between the optical components is important for precise observation. However, satellite cameras are structurally subject to misalignment in the launch environment where vibration excitations and impacts apply, and in space environments where zero gravity, vacuum, radiant heat and degassing occur. All of these variables can cause misalignment among the optical components. The misalignment among optical components results in degradation of image quality, and a re-alignment process is needed to compensate for the misalignment. This process of re-alignment between optical components is referred to as a refocusing process. In this paper, we proposed a 3 - axis focusing mechanism to perform the refocusing process. This mechanism is attached to the back of the secondary mirror and consists of three piezoelectric inertia-friction actuators to compensate the x-axis, y-axis tilt, and de-space through three-axis motion. The fabricated focus mechanism demonstrated excellent servo performance by experimenting with PD servo control.