• Title/Summary/Keyword: Optical Multistage Interconnection Network

Search Result 5, Processing Time 0.017 seconds

Analytical Diagnosis of Single Crosstalk-Fault in Optical Multistage Interconnection Networks (광 다단계 상호연결망의 단일 누화고장에 대한 해석적 고장진단 기법)

  • Kim, Young-Jae;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.256-263
    • /
    • 2002
  • Optical Multistage Interconnection Networks(OMINs) comprising photonic switches have been studied extensively as important interconnecting building blocks for communication networks and parallel computing systems. A basic element of photonic switching networks is a 2$\times$2 directional coupler with two inputs and two outputs. This paper is concerned with the diagnosis of cross-talk-faults in OMINs. As the size of today's network becomes very large, the conventional diagnosis methods based on tests and simulation have become inefficient, or even more, impractical. In this paper, we propose a simple and easily implementable algorithm for detection and isolation of the single crosstalk-fault in OMINs. Specifically, we develope an algorithm fur the isolation of the source fault in switching elements whenever the single crosstalk-fault is detected in OMINS. The proposed algorithm is illustrated by an example of 16$\times$16 banyan network.

A machine learning assisted optical multistage interconnection network: Performance analysis and hardware demonstration

  • Sangeetha Rengachary Gopalan;Hemanth Chandran;Nithin Vijayan;Vikas Yadav;Shivam Mishra
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.60-74
    • /
    • 2023
  • Integration of the machine learning (ML) technique in all-optical networks can enhance the effectiveness of resource utilization, quality of service assurances, and scalability in optical networks. All-optical multistage interconnection networks (MINs) are implicitly designed to withstand the increasing highvolume traffic demands at data centers. However, the contention resolution mechanism in MINs becomes a bottleneck in handling such data traffic. In this paper, a select list of ML algorithms replaces the traditional electronic signal processing methods used to resolve contention in MIN. The suitability of these algorithms in improving the performance of the entire network is assessed in terms of injection rate, average latency, and latency distribution. Our findings showed that the ML module is recommended for improving the performance of the network. The improved performance and traffic grooming capabilities of the module are also validated by using a hardware testbed.

On the Minimization of Crosstalk Conflicts in a Destination Based Modified Omega Network

  • Bhardwaj, Ved Prakash;Nitin, Nitin
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.301-314
    • /
    • 2013
  • In a parallel processing system, Multi-stage Interconnection Networks (MINs) play a vital role in making the network reliable and cost effective. The MIN is an important piece of architecture for a multiprocessor system, and it has a good impact in the field of communication. Optical Multi-stage Interconnection Networks (OMINs) are the advanced version of MINs. The main problem with OMINs is crosstalk. This paper, presents the (1) Destination Based Modified Omega Network (DBMON) and the (2) Destination Based Scheduling Algorithm (DBSA). DBSA does the scheduling for a source and their corresponding destination address for messages transmission and these scheduled addresses are passed through DBMON. Furthermore, the performance of DBMON is compared with the Crosstalk-Free Modified Omega Network (CFMON). CFMON also minimizes the crosstalk in a minimum number of passes. Results show that DBMON is better than CFMON in terms of the average number of passes and execution time. DBSA can transmit all the messages in only two passes from any source to any destination, through DBMON and without crosstalk. This network is the modified form of the original omega network. Crosstalk minimization is the main objective of the proposed algorithm and proposed network.

Optical implementation of two-stage free-space interconnection network using hologram arrays (홀로그램 어레이를 이용한 2단 자유공간 광연결 구현)

  • 지창환;박진상;장주성;정신일
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.253-260
    • /
    • 1996
  • In this paper, a simple scheme of two-stage free-space photonic swiching system for nonblocking optical interconnections has been investigated using holgorams. The multistage system requires a smaller number of interconnections for a given number of inpuut-output nonblocking ports than the single stage system does. Here hologram elements were used to change interconnection beam paths. In order to increase the idffraction efficiency of the hologram elements in photographic plates, a bleaching technique was used, which converts the amplitude hologram to the phase hologram. To show sthe feasibility of our optical interconnection system, it was implemented using the bleached hologram arrays and an LCTV spatial light modulator, and the sytem as a photonic switching system was demonstrated.

  • PDF

Diagnosis of Multiple Crosstalk-Faults in Optical Cross Connects for Optical Burst Switching (광 버스트 스위칭을 위한 광 교환기에서의 다중 누화고장 진단기법)

  • 김영재;조광현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • Optical Switching Matrix (OSM) or Optical Multistage Interconnection Networks (OMINs) comprising photonic switches have been studied extensively as important interconnecting blocks for Optical Cross Connects (OXC) based on Optical Burst Switching (OBS). A basic element of photonic switching networks is a 2$\times$2 directional coupler with two inputs and two outputs. This paper is concerned with the diagnosis of multiple crosstalk-faults in OSM. As the network size becomes larger in these days, the conventional diagnosis methods based on tests and simulation become inefficient, or even more impractical. We propose a simple and easily implementable algorithm for detection and isolation of the multiple crosstalk-faults in OSM. Specifically. we develop an algorithm for isolation of the source fault in switching elements whenever the multiple crosstalk-faults arc detected in OSM. The proposed algorithm is illustrated by an example of 16$\times$16 OSM.