• Title/Summary/Keyword: Optical Hydrogen Sensor

Search Result 25, Processing Time 0.017 seconds

Implantation of portable hydrogen alarm system based on palladium coated single mode optical fiber sensor (팔라듐이 코팅된 단일모드 광섬유 센서를 이용한 수소 경보 시스템 구현)

  • Mun, Nam-Il;Yang, Byung-Cheol;Kim, Kwang-Taek;Kim, Tae-Un
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • In this paper, a study on a portable hydrogen alarm system based on the palladium coated single mode fiber sensor has been reported. The fabricated hydrogen sensor exhibited 0.14 dB, 0.41 dB and 0.54 dB optical intensity variation when it was exposed by the nitrogen and hydrogen mixed gas containing 0.5 %, 1 % and 4 % of the hydrogen concentration, respectively. The fabricated sensor exhibited 20 second of response time and 120 second of recovery time for 4 % hydrogen containing gas. The fiber optics layout and software algorithm for detection of hydrogen leakage have been presented. The implanted portable hydrogen alarm system successfully generated an alarm signal when a 4 % hydrogen containing gas was leaked out.

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

Fabrication and Application of Palladium Coated Fiber-Optic Hydrogen Detection Sensor (팔라듐이 코팅된 광섬유 수소 검출 센서 제작과 응용)

  • Kim, Kwang Taek;Lee, Sang Won;Kim, Dong Geun;Choi, Nu Ri;Lee, Jong Ryeok;Baik, Se Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • We have proposed a hydrogen detection sensor based on a Pd (palladium)-coated, single-mode, optical fiber. The experimental results demonstrated that the sensor could detect hydrogen in air as well as in insulation oil. The influence of Pd film thickness and environmental temperature on response time and sensitivity was analyzed. The reflected optical power at the optical-fiber/Pd interface decreased as the concentration of hydrogen increased, in both air and the insulation oil. The sensor showed 0.75 dB of optical power variation when the concentration of dissolved hydrogen was saturated in the insulation oil.

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics (3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.

Hydrogen detection system based on Pd coated fiber sensor (Pd가 코팅된 광섬유 센서를 이용한 수소 검출 시스템)

  • Park, Seon-Ok;Park, Gyu-Ha;Yang, Byeong-Cheol;Kim, Gwang-Taek;Kim, Tae-Eon;Kim, Hoe-Jong;Baek, Se-Jong;Im, Gi-Geon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.347-348
    • /
    • 2007
  • We have implemented a hydrogen detection system based on a Pd coated fiber sensor. The configuration of the system and the characteristics of the hydrogen sensor was presented.

  • PDF

Multi-point detection of hydrogen using the hetero-core structured optical fiber hydrogen tip sensors and Pseudorandom Noise code correlation reflectometry

  • Hosoki, Ai;Nishiyama, Michiko;Igawa, Hirotaka;Seki, Atsushi;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In this paper, the multi-point hydrogen detection system based on the combination of the hetero-core optical fiber SPR hydrogen tip sensor and interrogator by pseudorandom noise (PN) code correlation reflectometry has been developed. In a light intensity-based experiment with an LED operating at 850 nm, it has been presented that a transmitted loss change of 0.32dB was induced with a response time of 25 s for 4% $H_2$ in $N_2$ in the case of the 25-nm Au, 60-nm $Ta_2O_5$, and 5-nm Pd multi-layers film. The proposed sensor characteristic shows excellent reproducibility in terms of loss level and time response for the in- and out- $H_2$ action. In addition, in the experiment for multi-point hydrogen detection, all sensors show the real-time response for 4% hydrogen adding with reproducible working. As a result, the real-time multi-point hydrogen detection could be realized by means of the combination of interrogating system and hetero-core optical fiber SPR hydrogen tip sensors.

Hydrogen Sensor Based on A Palladium-Coated Long-Period Fiber Grating Pair

  • Kim, Young-Ho;Kim, Myoung-Jin;Park, Min-Su;Jang, Jae-Hyung;Lee, Byeong-Ha;Kim, Kwang-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.221-225
    • /
    • 2008
  • We propose a simple hydrogen detection scheme based on a Mach-Zehnder interferometer formed with a pair of palladium-coated long-period fiber gratings (LPGs). Since an LPG pair offered a fine-structured interference fringe in its transmission spectrum, the resolution as a sensor could be appreciably enhanced compared to that of a single LPG. As the palladium layer absorbed hydrogen, the effective refractive indices of the cladding modes were increased so that the interference spectrum was blue-shifted up to 2.3 nm with a wavelength sensitivity of -0.29 nm/min for 4% of hydrogen concentration.

Review and new trends of hydrogen gas sensor technologies (수소센서 기술의 고찰과 최근동향)

  • Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.