• 제목/요약/키워드: Optical Fiber Sensors

검색결과 372건 처리시간 0.025초

지능형 복합재 구조물에 삽입된 광섬유센서의 피로거동에 관한 연구 (A study on the fatigue behavior of optical fiber sensors embedded in smart composite structures)

  • 장태성;김호;이정주
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.579-587
    • /
    • 1998
  • In this study, fatigue behavior of the optical fiber sensor embedded in composite laminate was investigated. Static tensile and fatigue tests were performed for three types of laminated composite specimens with embedded optical fiber sensor in the neutral plane ; [0/sub 6//OF/0/sub 6/]/sub T/, [0/sub 2//90/sub 4//OF/90/sub 4//0/sub 2/]/sub T/ and [0/sub 3//90/sub 3//OF/90/sub 3//0/sub 3/]/sub T/. The fracture of the embedded optical fiber sensor was detected by the intensity drop off of laser signal transmitted through the optical fiber sensors embedded within laminated composite specimen. The maximum fatigue stress applied to laminated specimen was compared with the average tensile stress at which the fracture of the embedded optical fiber within the laminate occurred under static tensile loading. From the experiments, firstly it is observed that the decrease in the life of optical fiber sensors embedded within unidirectional-ply laminate by the fatigue loading is relatively small compared to that of cross-ply laminate. Secondly, the optical fiber embedded in unidirectional-ply laminate is fractured by the fatigue damage due to the growth of internal defects of optical fiber, however the optical fiber embedded in cross-ply laminate is fractured by the growth of transverse matrix crack.

지중선로의 분포 온도 측정 시스템 개발 (Development of optical temperature distribution measurement system for Underground Power Transmission tunnel)

  • 이근양;송우성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-Column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.595-601
    • /
    • 2003
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability und dominate tile strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

  • PDF

선체의 변형을 감지하기 위한 새로운 형태의 장주기 광섬유 격자 소자 (Novel Long-period Fiber Grating devices for Monitoring the Deformation of Ship Hull)

  • 손경락
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.761-767
    • /
    • 2007
  • We have developed novel optical-fiber sensors based on strain-induced long-period fiber gratings for monitoring the deformation of a hull. They have no external pressure for sustaining the mechanical formed gratings. The pressure, which provides a force to form the periodic grating along the single mode fiber, was realized by the bonding strength of a photopolymer. To reduce the polarization dependency of the sensors caused by the asymmetry structure of gratings, a Faraday Rotator Mirror (FRM) was utilized in this experiment. We have realized the polarization-insensitive function of the proposed sensors. The change of an external strain are measured by an optical spectrum analyzer. When the external stain increases. the attenuation at the resonant wavelength decreases and the loss peak was slightly shifted to the shorter wavelength.

Analytic Formulation of Transmission Light Intensity of Hole Blockers in Intensity-based Polymer Optical Fiber Sensors

  • Kwon, Il-Bum;Kim, Chi-Yeop;Shim, Chan-Wook;Hwang, Du-Sun;Chung, Yung-Joo
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.221-225
    • /
    • 2011
  • Intensity-based optical fiber sensors are devised using a blocker which is located between two polymer optical fibers(POFs), one fiber is light-in and the other is light-out. This blocker is moved by an external displacement. Therefore, finding a general formulation of the relation between this displacement and transmission light intensity of various blockers is important to help develop intensity-based optical fiber sensors. In this paper, we consider blockers with arbitrary shapes from circular holes to inclined angled blockers. The transmission light intensities of such blockers should be determined by this generalized equation. In order to verify this equation, the calculated intensities of the blockers are compared with the values acquired from experiment. In the comparison, it is shown that the analytic equation can give the exact values of the transmitted light intensities for the assorted blockers. The range of the displacement measurement is also shown to be about 6 times of the radius of the hole in the case of a 9 degree inclined angle blocker.

광강도형 광섬유센서를 이용한 피로손상 및 진동감지 (Fatigue Damage Detection and Vibration Sensing Using Intensity-Based Optical Fiber Sensors)

  • 양유창;전호찬;한경섭
    • Composites Research
    • /
    • 제13권1호
    • /
    • pp.89-97
    • /
    • 2000
  • 광섬유센서를 이용한 복합적층판의 피로손상 감지 및 진동측정, 그리고 스틸 보에 대한 충격위치 검출에 관한 연구가 수행되었다. 피로과정중의 신호는 복합재료 내에 삽입된 광섬유와 표면에 부착한 광강도형 광섬유센서, 그리고 스트레인게이지로부터 동시에 측정되었다. 진동감지 실험은 복합재료 보의 표면에 광섬유센서를 부착하여 자유진동 및 강제진동 신호를 취득하였다. 충격위치 검출에 관한 실험에서 충격위치는 충격에 의해 발생된 구조물의 진동이 두 센서에 도달하는 시간의 차를 이용하여 구할 수 있다. 광강도형 광섬유센서를 이용하여 반복 피로 신호를 잘 취득할 수 있었으며 스트레인게이지에 비하여 피로저항성이 우수함이 확인되었다. 광섬유센서는 갭센서와 동일하게 진동신호를 감지하였고 구조물에 가해진 충격위치를 비교적 정확히 검출할 수 있었다.

  • PDF

광시간영역 반사계를 이용한 분포형 광섬유 과열 감지 센서 (Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry)

  • 김대현;김광택
    • 센서학회지
    • /
    • 제22권4호
    • /
    • pp.297-301
    • /
    • 2013
  • We proposed and demonstrated a distributed fiber-optic overheating detection sensor using optical time domain refrectometry. With increased of temperature the optical fiber is bended by a bi-metal and it result in optical leaky loss of the fiber. The sensor structure is designed in such a way that the signal of overheating is happen when the temperature exceeding a threshold temperature and the optical fiber is protected from excess bending.

Characterization of both adhesion and interfacial interaction between optical fiber coating and structural

  • Brotzu, A.;Felli, F.;Fiori, L.;Caponero, M.A.
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.439-448
    • /
    • 2008
  • Optical fiber sensors are by now broadly accepted as an innovative and reliable device for structural health monitoring, to be used either embedded into or bonded on structures. The accuracy of the strain measurement achievable by optical fiber sensors is critically dependent on the characteristics of the bonding of the various interface layers involved in the sensor bonding/embedding (structure material and gluing agent, fiber coating and gluing agent, fiber coating and fiber core). In fact, the signal of the bonded/embedded optical fiber sensor must correspond to the strain experienced by the monitored structure, but the quality of each involved interface can affect the strain transfer. This paper faces the characterization, carried on by both mechanical tests and morphological analysis, of the strain transfer function resulting with epoxidic and vinylester gluing agent on polyimide and acrylate coated optical fibers.

BSO와 YIG를 이용한 임펄스 전압, 전류 측정용 광센서 구현 (An implementation of fiber-optic sensors for impulse voltage and current measurement using a BSO and an YIG)

  • 송재성;김영수
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.688-693
    • /
    • 2000
  • In this paper an optical voltage sensor and an optical current sensor which can be used for the measurement of impulse voltage and current are implemented. BSO single crystal is utilized as a voltage sensor(Pockels effect cell). An rare earth doped YIG is used as a current sensor(Faraday effect cell). A new signal processing technique is adopted not only to avoid the influences o external optical fiber pertubations of transmitting optical fiber but also to improves the frequency response characteristics of the fiber-optic voltage and current sensors. Experimental results show that optical voltage sensor has maximum 2.5% error within the voltage range from 0V to 500V. and optical current sensor has maximum 2.5% error within the current range and that of optical current sensor is about 1.5% within temperature range from -2$0^{\circ}C$ to 6$0^{\circ}C$. The proposed optical sensors have good frequency response characteristics within the frequency range from DC to 10MHz.

  • PDF