• 제목/요약/키워드: Optical FBG Sensors Embedded Tendon

검색결과 4건 처리시간 0.02초

광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상 (Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor)

  • 성현종;김영상;김재민;박귀현
    • 한국지반공학회논문집
    • /
    • 제28권5호
    • /
    • pp.13-25
    • /
    • 2012
  • 그라운드 앵커공법은 현재 우리나라에서 가장 일반적으로 사용되는 사면보강공법들 중 하나이다. 앵커로 보강된 사면의 안정성을 장기간 확인하기 위해서는 그라운드 앵커의 긴장력을 측정하는 것이 매우 중요하다. 그러나 현재 현장에서 주로 사용되는 스트레인게이지 및 V/W타입의 로드 셀은 전자기파에 의한 노이즈 발생이 크고 습기 또는 수분의 영향으로 인해 측정값에 오차가 발생할 수 있으며 자기열화 등으로 장기간의 모니터링에 한계가 있다. 또한 앵커의 개별 텐던에 발생하는 미세한 변화를 정확히 감지할 수 없는 단점이 있어 이를 개선할 수 있는 방안으로 광섬유 센서를 이용하여 강연선의 변형률을 측정할 수 있는 광섬유 센서 내장형 텐던이 개발되었다. 이 광섬유 센서 내장형 텐던은 단기간의 앵커 장력 측정에 성공적으로 적용된 사례가 보고되었으나 장기간에 걸친 장력 변화를 측정하기 위해서는 온도에 의한 광섬유 센서의 변형률을 보상하여야 한다. 이 논문에서는 광섬유 센서 내장형 텐던을 이용하여 그라운드 앵커의 장력모니터링 시 지중온도 변화에 의한 영향을 보상하는 실용적인 방안에 대하여 기술하였다. 먼저 실내실험을 통하여 광섬유 센서 내장형 텐던의 온도반응계수(${\beta}^{\prime}$)를 $2.0{\times}10^{-5}/^{\circ}C$로 결정하고 실제 현장에 설치된 광섬유 센서를 이용하여 깊이별 지중온도 변화값을 측정하였다. 연구 대상지역(여수)의 기상청 지중온도 측정 결과 자료와의 비교를 통하여 결정된 온도반응계수(${\beta}^{\prime}$)를 이용한 광섬유 센서 내장형 텐던의 온도반응 성능을 검증하였다. 최종적으로 광섬유 센서 내장형 텐던을 이용하여 실제 사면에 설치된 인장형 앵커와 압축형 앵커의 계절별 긴장력을 모니터링하고 기상청 지중온도 측정자료와 온도반응계수를 이용하여 온도보상을 실시하여 기존 V/W타입의 로드 셀 측정 결과와 비교하였다. 제안된 광섬유 센서 내장형 텐던의 온도반응계수와 기상청 지중온도 측정결과를 이용한 앵커의 온도보상 방법에 의해 측정된 긴장력 모니터링 결과가 계절에 따른 지중온도 변화에 상관없이 로드 셀 결과와 일관성 있게 비교되어 제안된 온도보상 방법이 매우 실용적이며 합리적인 것으로 나타났다.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

광섬유 센서를 이용한 인장형 그라운드 앵커의 장력측정 (Tension Force Monitoring of Tension Type Ground Anchor Using Optical FBG Sensors)

  • 성현종;김영상;김재민;박귀현
    • 한국지반공학회논문집
    • /
    • 제27권6호
    • /
    • pp.17-26
    • /
    • 2011
  • 그라운드 앵커공법은 현재 우리나라에서 가장 일반적으로 사용되는 사면보강공법들 중 하나이다. 그러므로 앵커로 보강된 사면의 안정성을 장기간 확인하기 위해서는 그라운드 앵커의 긴장력을 측정하는 것이 매우 중요하다. 그러나 전통적인 로드 셀 방식의 측정기술을 제외하고는 특별한 기술이 개발된 것이 없다. 본 논문에서는 지반구조물의 보강을 위해 널리 사용되는 그라운드 앵커의 단기 및 장기 장력을 측정하기 위해 기존에 현장에서 주로 사용되는 스트레인게이지 또는 V/W 타입 로드 셀을 대체할 수 있는 새로운 방법에 대하여 기술하였다. 사용된 센서는 스트레인게이지 또는 V/W타입의 센서에 비해 크기가 작고 내구성이 우수하며 전자기파에 의한 노이즈 발생이 없는 광섬유 브래그격자(Fiber Bragg Grating ; FBG)센서이다. FBG 센서를 내장한 7연 강연선을 이용하여 원하는 위치에서 변형률 감지가 가능한 인장형 앵커를 제작하고 앵커 정착장을 연암과 화강풍화토 지반조건에 각각 2세트(set)씩 시공하여 현장인발실험을 수행하였다. 재하-제하단계를 포함하는 전 하중단계에서 FBG센서로 측정된 변형률로부터 장력 모니터링을 수행하였고 기존 로드 셀로 측정된 결과와 비교하였다. 현장 인발실험 결과, 제안된 광섬유 센서를 이용한 그라운드 앵커의 시공 중 긴장력 측정결과 실내 UTM 결과와 달리 약간의 차이가 있으나 실용적인 차원에서는 충분히 활용 가능한 것으로 확인되었다.

Prediction of load transfer depth for cost-effective design of ground anchors using FBG sensors embedded tendon and numerical analysis

  • Do, Tan Manh;Kim, Young-Sang
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.737-755
    • /
    • 2016
  • The load transfer depth of a ground anchor is the minimum length required to transfer the initial prestressing to the grout column through the bonded part. A thorough understanding of the mechanism of load transfer as well as accurate prediction of the load transfer depth are essential for designing an anchorage that has an adequate factor of safety and satisfies implicit economic criteria. In the current research, experimental and numerical studies were conducted to investigate the load transfer mechanism of ground anchors based on a series of laboratory and field load tests. Optical FBG sensors embedded in the central king cable of a seven-wire strand were successfully employed to monitor the changes in tensile force and its distribution along the tendons. Moreover, results from laboratory and in-situ pullout tests were compared with those from equivalent case studies simulated using the finite difference method in the FLAC 3D program. All the results obtained from the two proposed methods were remarkably consistent with respect to the load increments. They were similar not only in trend but also in magnitude and showed more consistency at higher pullout loading stages, especially the final loading stage. Furthermore, the estimated load transfer depth demonstrated a pronounced dependency on the surrounding ground condition, being shorter in hard ground conditions and longer in weaker ones. Finally, considering the safety factor and cost-effective design, the required bonded length of a ground anchor was formulated in terms of the load transfer depth.