• Title/Summary/Keyword: Optical Current Sensor

Search Result 242, Processing Time 0.027 seconds

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

A Study on the Current Sensor Using an Optical Modulator with BSO (BSO와 ZnSe를 광 변조기로 이용한 전류센서에 관한 연구)

  • 김요희;이대영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.721-728
    • /
    • 1991
  • In this paper, a magneto-optic modulator has been designed by using single crystal BSO and polycrystal ZnSe as Faraday cells. And practical core-type optical current sensors using pure iron and permalloy have been prepared and experimented. In order to obtain efficient magnetic field detection, LED(NEC OD08358, 0.87 $\mu$m) was used as optical source, PIN-PD(OD-8454)as optical receiver and multi-mode optical fiber (100/140$\mu$m) as transmission line. The characteristics matrix of the optical element was calculated by Stokes parameter, and optic modulation characteristics equations were derived by Muller matrix. Electromagnetic analysis program (FLUX 2D, micro VAX 3600) by finite element method was used to find the magnetic flux density around the core. The measuring error of the output voltage to input current has been masured below 5% in the range of 50A to 1000A. As the temperature was changed from -20$^{\circ}C$ to 60$^{\circ}C$, the maximum measurement error of the optical output has been found to be 0.5% at 60$^{\circ}C$. These experimental results show good temperature and linearity characteristics. The SNR of the overall system was 47dB in case of 600A (250.2 Oe) conductor current and the system has good noise immunity.

  • PDF

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

The fabrication and application of semiconductor laser diode for optical sensor (광센서용 반도체레이저의 제작 및 적용)

  • 김정호;안세경;김동원;조희제;배정철;홍창희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.271-274
    • /
    • 2002
  • In this study, we fabricated the semiconductor laser for optical sensor with 1.55${\mu}{\textrm}{m}$wavelength region. In order to suppress lasing oscillation and to reduce the reflectivity, the devices of bending type were designed and fabricated. Their output power were 1.6㎽ at a pulse drive current of 100㎃. When the fabricated device was applied to optical fiber gyroscope, the output power of optical fiber was 540㎻ at a CW drive current of 100㎃, the full width at half maximum spectral width was 53nm. And the random-walk coefficient was measured to be 2.5$\times$10­$^3$deg/√hr, the gyro output drift was also found to be 0.3 deg/hr. So we confirmed the possibility of application to use for light source of optical fiber gyroscope.

  • PDF

Stabilizationof a sagnac interferometric optical fiber current sensor (Sagnac 간섭계형 광섬유 광전류센서의 안정화 방법)

  • 강현서;이종훈;송정태;이경식;김철중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1607-1612
    • /
    • 1997
  • A new method of stabilizing a Sagnac optical fiber current sensor is presented. This method is characterized by creating aproper amount of circular birefringence the fibersagnac, whose correaponding value of rotation angle is (m+1/2)$\pi$-$2\Psi$, removes the effect of linear birefringence and leads to achieve good stability. Using the technique the stability of the current sensor was improved more than 10 times to within ${\pm}2.3{%}$ at 300Arms.

  • PDF

Characteristics and analysis of clamp-type optical current transformer using faraday effect (Faraday효과를 이용한 클램프형 광-전류 변류기의 특성 및 분석)

  • 김수길;이용욱;이병호;송민호;임용훈
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.399-405
    • /
    • 2003
  • We manufactured a clamp-type optical current transformer (COCT) head using FD10 glass. It was manufactured of two parts of FD10 glass with symmetrical structure and was designed so that light propagates along the critical angle in order to avoid a phase difference with the light within the sensor head at reflection. Also, we measured and analyzed the current of conductor from 0 to 1,000 AT, change of optical power with incidence angle of light, temperature and polarization of light, long-term current measurement using COCT head, and demonstrated the feasibility of manufactured COCT through those experiments.

Fiber Optic Current Sensor Using Faraday Effect (페러데이 효과를 이용한 광섬유형 전류센서)

  • Yang, C.;Song, M.;Ahn, S.J.;Park, B.S.;Lee, B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.38-40
    • /
    • 2001
  • Fiber-optic current sensor was developed using the Faraday effect to measure the electrical current on high-voltage lines. A twisted single-mode optical fiber was used as a sensor coil to suppress birefringence effect, enhancing performance against environmental perturbations. In this paper, we report the basic design considerations and the preliminary experimental results carried out in the 1000 A input current range.

  • PDF

Current Sensor for Bus Bar based on Fiber Bragg Gratings (광섬유 브래그 격자를 이용한 부스바용 전류 센서)

  • Kwang Taek Kim;Gunpyo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • In this paper, a fiber-optic current sensor for a bus bar conductor based on the fiber Bragg grating (FBG) is proposed and demonstrated experimentally. The metal bus bar and a magnet are connected to each other through an FBG and the Bragg wavelength of the FBG is changed by magnetic force between the two connected devices. The experimental results showed that the Bragg wavelength of an FBG shifted by 650 pm as the 500 A direct current was applied to the bus bar.

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.