• Title/Summary/Keyword: Optical Collimator

Search Result 69, Processing Time 0.024 seconds

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.

A Study on Ultra Precision Grinding Characteristics of Tungsten Carbide $LCU\_CL$ Core (초경합금 소재 $LCU\_CL$ 코어의 초정밀 연삭 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Lee Bongju
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.307-312
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this thesis, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base core of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Development and evaluation of a compact gamma camera for radiation monitoring

  • Dong-Hee Han;Seung-Jae Lee;Hak-Jae Lee;Jang-Oh Kim;Kyung-Hwan Jung;Da-Eun Kwon;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2873-2878
    • /
    • 2023
  • The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

Acceptance Test and Quality Control of Radiotherapy Treatment Simulator (의료용 모의치료기의 품질관리에 관한 연구)

  • 신동호;박성용;신동오;최진호;김유현;권수일
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • The simulator which has a identical geometry with radiotherapy equipments, is a essential equipment to accomplish optimized radiotherapy plan through simulation by using diagnostic low energy X-ray. A Radiotherapy simulator has a combined technology from the therapeutic and diagnostic radiology and needs a periodical test for mechanical and optical properties, X-ray generator, image intensifier of simulator to keep the proper maintenance and radiation safety. Hence, tests were done and classified as i) mechanical and optical parameter for the gantry, collimator, and couch ii) key performance of the X-ray generator such as a kVp, mAs, and timer iii) performance of the image intensifier such as a resolution and contrast for three kinds of simulator, common use in clinic. The above result of tests will be applied to the acceptance test and periodical quality assurance procedure.

  • PDF

Development of New Prototype of Mechanical Quality Assurance for Clinical Linear Accelerator (의료용 선형가속기의 기계적 점검을 위한 새로운 정도관리 프로토콜의 개발)

  • 윤형근;신교철;김기환;오영기;김진기;정동혁;김정기;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2002
  • In recent years, the radiotherapy equipment has become much more sophisticated, and with the complication comes an increased set of quality assurance (QA) responsibilities. Today's computer controlled linear accelerator requiring QA of not only the radiation integrity, but also the mechanical accuracy of the linear accelerator. The existing QA sheets are adequate for acceptance testing and commissioning but those sheets are somewhat descriptive form for routine QA. establishing the QA sheets for a facility are more efficient if the sheets could estimate the long-term stability for the result of QA. We are going to develope new prototype of mechanical QA sheet to visualize and to verify long-term stability of mechanical QA for clinical linear accelerator. The items included in mechanical QA sheet were 1) gantry rotation, 2) collimator rotation, 3) couch rotation, 4) optical distance indicator (ODI), and 5) laser alignment. We compared new prototype sheet with conventional sheet for several hospitals in Korea for those items. The QA acceptance criteria in this study mainly followed published recommendations. The contents of test for mechanical QA are the following. Confirm that the digital and/or mechanical gantry angle readouts are correct. Verify that digital and/or mechanical readouts of collimator angle agree with the true angle, as determined with the protractor. Measure the light field using a graph paper and compare with the digital readouts. Confirm digital readout accuracy. Verify that the sagittal laser, the left and right lasers, and the ceiling laser intersect at the isocenter. In the design of new QA sheet, we emphasized the representation of the long-term stability of mechanical QA by using Excel program. By using the new prototype QA sheet, we simplified and visualized the mechanical QA process, and could estimate the long-term stability of mechanical error of linear accelerator.

  • PDF

A Method for Evaluation of Mechanical Accuracy of a Teletherapy Machine Using Beam Directions (방사선 진행방향을 이용한 원격치료장치의 기계적 정확성 평가방법)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • Purpose: The purposes of this paper are to develop a theoretical basis that the beam directions should be considered when the mechanical accuracy of teletherapy machine is evaluated by the star pattern test, to develop methods using asymmetric field in length to simulate beam direction for the case that beam direction does not appear on film. Method: In evaluating mechanical rotational accuracy of the gantry of teletherapy unit by the star pattern test, the direction of radiation beams was considered. A star pattern using some narrow beams was made. Density profiles at 10cm far from estimated gantry axis on the star pattern were measured using an optical densitometer. On each profile, one coordimate of a beam axis was determined. A pair of coordinates on a beam axis form an equation of the axis. Assume that a unit vector equation omitted is with same direction as radiation beam and a vector equation omitted is a vector directing to the beam axis from the estimated gantry axis. Then, a vector product equation omitted ${\times}$ equation omitted is an area vector of which the absolute value is equal to the distance from the estimated gantry axis to the beam axis. The coordinate of gantry axis was obtained by using least-square method for the area vectors relative to the average of whole area vectors. For the axis, the maximum of absolute value of area vectors would be an accuracy of the gantry rotation axis. For the evaluation of mechanical accuracies of collimator and couch axes for which beam direction could not be depicted on a star pattern test film, narrow beams asymmetric in field length was used to simulate beam direction. Result: For a star test pattern to evaluate the mechanical accuracy of rotational axes of a telectherapy machine, the result considering beam direction was different from that ignoring beam direction. For the evaluation of mechanical accuracies of collimator and couch axes by means of a star pattern test, narrow asymmetric beams could simulate beam direction. Conclusion: When a star pattern test is used to evaluate the mechanical accuracy of a teletherapy unit, beam direction must be considered or simulated, and quantitatively evaluated.

  • PDF

Development of a MTF Measurement System for an Infrared Optical System (적외선 광학계용 MTF 측정장치 개발)

  • Son, Byoung-Ho;Lee, Hoi-Yoon;Song, Jae-Bong;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • In this paper, we developed a MTF (Modulation Transfer Function) measurement system using a knife-edge scanning method for infrared optics. It consists of an objective part to generate the target image, a collimator to make the beam parallel, and a detector to analyze the image. We used a tungsten filament as the light source and MCT (Mercury Cadmium Telluride) to detect the mid-infrared(wavelength $3-5{\mu}m$) image. We measured the MTF of a standard lens (f=5, material ZnSe) to test this instrument and compared the result to the theoretical value calculated using the ZEMAX commercial software. It was found that the difference was within ${\pm}0.035$ at the cut-off frequency (50 1/mm). Also, we calculated the A-type measurement uncertainty to check the reliability of the measurement. The result showed only 0.002 at 20 1/mm in spatial frequency, which means very little variation in the MTF measurement under the same conditions.

Fabrication and Dosimetry Characteristics of Intracavitary Cones for Radiotherapy (방사선 강내치료를 위한 소조사면 전자선cone의 선량분포 특성)

  • 나수경;권수일
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.95-102
    • /
    • 2001
  • The intracavitary cones were designed which were made of stainless steel and have scratched inside cone to be generated electron scatter and designed to be attached easily to the LINAC collimator and controlled cones length to be contacted smoothly between the patient and the cone tip. Two types of intracavitary cones were designed. One is the straight end cones with circular opening on the distal end and the other is 30 degree beveled end cones with elliptical opening on the distal end. Each type of intracavitary cone ranged in daimeter from 2.5 cm to 3.5 cm and required a separate set of lower trimmer annulias cone diameter. The film phantom was designed with an internal cassette that accurately aligned the film edge with the film phantom surface. Film optical density data were measured by photodensitometer(Wellhofer 700i) Dosimetry measurements were made to commission the LINAC for 6 - 20 MeV electron using the intracavitary cones. Isodose curves were measured for all energy and cones combinations. Output is defined as the maximum dose per MU along the clinical central axis in water at 113 cm SSD. Calibration output, defined to be the output for the 15cm$\times$15cm diameter straight cone, was adjusted to 1.00 cGy/MU at each energy according to the TG-21 protocol.

  • PDF

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.