• Title/Summary/Keyword: Optical & Mechanical property

Search Result 137, Processing Time 0.033 seconds

Effects of cladding speed and preheating temperature on the productivity of AS wire (AS wire의 생산성에 미치는 클래딩속도와 예열온도의 영향)

  • Yoon J. S.;Lee S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.373-376
    • /
    • 2005
  • In recent years, there has been a growing need fur productivity improvement of ACS wire (Aluminum clad Steel wire) In optical communication market. So, it is necessary to improve the production speed and following quality of ACS wire to reduce the unit cost of the products. In this study, the pre-heating temperature and cladding speed is chosen as the factors can influence the mechanical and metallurgical properties during cladding, and the changing behavior of mechanical property and microstructure by controlling above two factors are investigated. And the bearing length and approach angle in cladding die are selected as the important elements for designing optimum die enabling high speed cladding. So we carried out FE(Finite Element) analysis using the above two elements as variables. This paper aims to understand the change of mechanical properties and microstructure according to the change of each factor during cladding and suggest the optimized cladding condition to get the best quality of OPGW. And also we would like to introduce the optimum die structure that enables high-speed cladding.

  • PDF

Fabrication and Mechanical Properties of TiNi/Al2024 Composites by Hot-Press Method (고온 프레스법에 의한 TiNi/Al2024 복합재료의 제조 및 기계적 특성평가)

  • Son, Yong-Kyu;Bae, Dong-Su;Park, Young-Chul;Lee, Gyu-Chang
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy fiber and Al2024 sheets were used as reinforcing material and matrix, respectively. In this study, TiNi/Al2024 shape memory alloy composite was made by using hot press method. In order to investigate bonding condition between TiNi reinforcement and Al matrix, the micro-structure of interface was observed by using optical microscope and diffusion layer of interface was measured by using Electron Probe Micro Analyser. And the mechanical properties of composite with three parameters(volume fraction of fiber, cold rolling amount and test temperature) were obtained by tensile test. The most optimum bonding condition for fabrication the TiNi/Al2024 composite material was obtained as holding for 30min. under the pressure of 60MPa at 793K. The strength of composite material increased considerably with the volume fraction of fiber up to 7.0%. And the tensile strength of this composite increased with the reduction ratio and it also depends on the volume fraction of fiber.

The Effect of Microstructure and Mechanical Property with Heat Treatment Condition in Boron-Treated Low Carbon Low Alloy Steel (저탄소.저합금 보론 첨가강의 열처리 조건에 따른 미세조직과 기계적 성질의 영향)

  • Son, J.Y.;Park, B.C.;Sung, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.146-149
    • /
    • 2007
  • The effects of boron additions in steels have long been recognized as very important, mainly with respect to hardnability of heat treatable steels. The systematics of structure and properties of boron steels will then be illustrated in the context of low-alloy steels with carbon contents raging from 0.05 to 0.25% and boron contents 0-130 ppm. we investigated the effect of the microstructure and mechanical properties with heat treatment condition of the boron-treated(0.0013 ppm) low carbon(0.2 %C) low alloy steel. The specimens were austenitised for 5 and 10, 15 min at $880{\sim}940^{\circ}C$(with/without tempered at 150, 180 and $210^{\circ}C$ for the various periods of time from 60 min to 120 min) After heat treatment, mechanical properties were measured by tensile test and hardness test. For analysis of microstructure, Optical/SEM analysis and XRD were carried out.

  • PDF

Evaluation of Microstructure, Phases, and Mechanical Properties of Aged Porcelain Insulator

  • Cho, Jun-Young;Jin, Woo-Chan;Bae, Sung-Hwan;Park, Chan
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.137-142
    • /
    • 2019
  • The microstructure, phase, and mechanical properties of three aged porcelain insulators which were manufactured in different years (1973, 1995 and 2008) and which were used in the field for different amounts of time, were investigated. With X-ray 3D computed tomography (CT), defects with ~mm size can be detected without destroying the aged insulators. Defects of small specimens, which are cut from the aged insulators and polished, are analyzed with optical and scanning electron microscopy (OM and SEM), and defects of um size are detected by OM and SEM. The number and size of defects in all the aged insulators are similar. Porcelain insulators manufactured in 1973 contain more $SiO_2$ (quartz and cristobalite) than those manufactured in 2008. Those manufactured in 2008 contain more $Al_2O_3$ than those manufactured earlier. The Vickers hardness of the insulator manufactured in 1973 has the lowest value. The formation of the cristobalite ($SiO_2$) in the insulator manufactured in 1973 which can come from the phase transformation of quartz can cause stress in the insulator by formation of microcracks, which can lead to the low hardness of the insulator.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

Novel polyvinyl alcohol film dosimeter containing 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye for high dose application

  • Khalid A. Rabaeh;Ahmed A. Basfar;Issra' M.E. Hammoudeh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3383-3387
    • /
    • 2023
  • A new dyed polyvinyl alcohol (PVA) film dosimeter based on 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MMT) tetrazolium dye is proposed in this study for measuring high gamma radiation dose. Gamma cell irradiator that contains Co-60 gamma-ray source was used to expose the novel MMT-PVA films to different doses up to 25 kGy. The changed in optical property of irradiated and unirradiated films were characterized by UV-Vis spectrophotometer. The results show that the dose sensitive and the linear range of irradiated films were increased considerably with increase of MMT concentration from 1 to 5 mM. The dose response of dyed PVA film changed substantially with changing relative humidity (12-74%) as well as irradiation temperature (10-40 ℃). The absorbance of the unirradiated films does not change up to 10 days in dark while a significant increase in their absorbance was reported for similar films under fluorescent light. The irradiated dosimeters that kept in dark showed a perfect stability for 54 days. It was found that no obvious impact of dose rate on the irradiated MMT-PVA film dosimeters.

Investigation of Molding Characteristics in Injection Compression Molding According to Molding Conditions through Birefringence (사출압축성형에서 복굴절을 통한 성형조건에 따른 성형특성 고찰)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.193-198
    • /
    • 2014
  • Lens and DVD require high quality of optical property. Conventional injection molded products contain high residual stress and this invokes birefringence since high cavity pressure and high temperature variation are involved in a molding process. Thus these products are often molded by injection compression molding in order to minimize the residual stress through reducing cavity pressure and uniform cavity pressure. In this study, molding parameters affecting molding quality such as property uniformity in injection compression molding were investigated through experiment. Molding quality deviations among the cavities in multi-cavity mold were also studied. Transparent resins, PC and PS were used in this study. Compression gap, compression speed, compression force, and compression delay time for processing variables in injection compression molding were applied in experiment. Compression force, compression delay time, and compression gap significantly affected the optical property of product. The degree of influence of process variable on the product quality was different in different resins. This implies that the optimal operational conditions in injection compression molding existed for each resin according to flow property.

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

Development of high power impulse magnetron sputtering (HiPIMS) techniques

  • Lee, Jyh-Wei
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.3-32
    • /
    • 2016
  • High power impulse magnetron sputtering (HiPIMS) technique has been developed for more than 15 years. It is characterized by its ultra-high peak current and peak power density to obtain unique thin film properties, such as high hardness, good adhesion and tribological performance. However, its low deposition rate makes it hard to be applied in industries. In this work, the development of HiPIMS system and integration of radio frequency (RF) or mid-frequency (MF) power supplies were introduced. Effects of duty cycle and repetition frequency on the microstructure, mechanical property, optical and electrical properties of some binary, ternary and quarternary nitride coatings and oxide thin films were discussed. It can be observed that the deposition rate was effectively increased by the superimposed HiPIMS with RF or MF power. High hardness, good adhesion and sufficient wear resistance can be obtained through a proper adjustment of processing parameters of HiPIMS power system.

  • PDF

A Study of Hydrogen-Induced Metal Atom Rearrangement

  • Noh, Hak;Park, Choong-Nyeon;Flanagan, Ted B.
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.111-115
    • /
    • 1996
  • Metal atom rearrangement has been shown to take place under the influence of hydrogen-induced atomic diffusion (HIAD) in initially homogeneous fee palladiumalloys by electron microprobe analysis, optical microscopy, mechanical property tests and hydrogen isotherms. HIAD takes place in palladium alloys at moderate to elevated temperatures leading to phase segregation under conditions where segregation does not normally occur, i.e., in the absence of H over the time scale of the experiments. From these results, it is confirmed that dissolved hydrogen plays a dual role in some of these alloys, i.e. it catalyzes metal atom diffusion. This research demonstrates the potential utility of employing H-induced changes for phase diagram determination of Pd alloys and possibly for other alloy system.

  • PDF