• Title/Summary/Keyword: Opportunistic Routing protocol

Search Result 18, Processing Time 0.017 seconds

An Efficient Context-aware Opportunistic Routing Protocol (효율적인 상황 인지 기회적 라우팅 프로토콜)

  • Seo, Dong Yeong;Chung, Yun Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2218-2224
    • /
    • 2016
  • Opportunistic routing is designed for an environment where there is no stable end-to-end routing path between source node and destination node, and messages are forwarded via intermittent contacts between nodes and routed using a store-carry-forward mechanism. In this paper, we consider PRoPHET(Probabilistic Routing Protocol using History of Encounters and Transitivity) protocol as a base opportunistic routing protocol and propose an efficient context-aware opportunistic routing protocol by using the context information of delivery predictability and node type, e.g., pedestrian, car, and tram. In the proposed protocol, the node types of sending node and receiving node are checked. Then, if either sending node or receiving node is tram, messages are forwarded by comparing the delivery predictability of receiving node with predefined delivery predictability thresholds depending on the combination of sending node and receiving node types. Otherwise, messages are forwarded if the delivery predictability of receiving node is higher than that of sending node, as defined in PRoPHET protocol. Finally, we analyze the performance of the proposed protocol from the aspect of delivery ratio, overhead ratio, and delivery latency. Simulation results show that the proposed protocol has better delivery ratio, overhead ratio, and delivery latency than PRoPHET protocol in most of the considered simulation environments.

Performance Evaluation of MAC Protocols with Application to MANET Routing for Distributed Cognitive Radio Networks (분산 무선 인지 네트워크를 위한 MAC 프로토콜의 MANET 라우팅 적용 성능 분석)

  • Kwon, Sehoon;Kim, Hakwon;Kim, Bosung;Roh, Byeong-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 2014
  • In this paper, we propose a design method to extend certain cognitive radio (CR) MAC protocols originally proposed only for the one hop applications in distributed CR networks to MANET routing protocols. Among several CR MAC protocols, the opportunistic MAC (called O-MAC) and the opportunistic period MAC (called OP-MAC) are considered, and AODV as MANET routing protocol is used. We implement the protocols using OPNET network simulator, and compare the performances in both MAC and AODV routing environments. With the experiments, we analyze the relationship between MAC and routing performances of the CR protocols.

Dynamic Adjustment Strategy of n-Epidemic Routing Protocol for Opportunistic Networks: A Learning Automata Approach

  • Zhang, Feng;Wang, Xiaoming;Zhang, Lichen;Li, Peng;Wang, Liang;Yu, Wangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2020-2037
    • /
    • 2017
  • In order to improve the energy efficiency of n-Epidemic routing protocol in opportunistic networks, in which a stable end-to-end forwarding path usually does not exist, a novel adjustment strategy for parameter n is proposed using learning atuomata principle. First, nodes dynamically update the average energy level of current environment while moving around. Second, nodes with lower energy level relative to their neighbors take larger n avoiding energy consumption during message replications and vice versa. Third, nodes will only replicate messages to their neighbors when the number of neighbors reaches or exceeds the threshold n. Thus the number of message transmissions is reduced and energy is conserved accordingly. The simulation results show that, n-Epidemic routing protocol with the proposed adjustment method can efficiently reduce and balance energy consumption. Furthermore, the key metric of delivery ratio is improved compared with the original n-Epidemic routing protocol. Obviously the proposed scheme prolongs the network life time because of the equilibrium of energy consumption among nodes.

REVIEW ON ENERGY EFFICIENT OPPORTUNISTIC ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS

  • Ismail, Nasarudin;Mohamad, Mohd Murtadha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3064-3094
    • /
    • 2018
  • Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design.

Opportunistic Broadcast Protocol for Frequent Topology Changes in Vehicular Ad-hoc Networks (차량 애드혹 네트워크의 빈번한 토폴로지 변경에 적합한 기회적 브로드캐스트 프로토콜)

  • Cha, Si-Ho;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The message propagation between vehicles must be efficiently performed to quickly transmit information between vehicles in vehicle ad hoc networks (VANETs). Broadcasting can be the most effective solution for propagating these messages. However, broadcasting can cause broadcast storm problems, which can reduce the performance of the overall network. Therefore, rapid information delivery in VANET requires a method that can propagate messages quickly without causing the broadcast storm problems. This paper proposes a lightweight and opportunistic broadcast (LOB) protocol that leverages the features of opportunistic routing to propagate messages quickly while minimizing the load on the network in VANETs where the network topology changes frequently. LOB does not require any routing information like greedy forwarding scheme, and neighboring nodes at the farthest distance within the range of transmission nodes are likely to be selected as forwarding nodes, and multiple forwarding candidate nodes like opportunistic routing scheme can increase packet transmission rates. Simulation results using ns-2 showed that LOB outperformed existing broadcast protocols in terms of packet rate and packet delay.

Opportunistic Multipath Routing Scheme for Guaranteeing End-to-End Reliability in Large-Scale Wireless Sensor Networks (대규모 무선 센서 망에서 종단 간 신뢰성 보장을 위한 기회적 다중경로 라우팅 방안)

  • Kim, Cheonyong;Jung, Kwansoo;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2026-2034
    • /
    • 2015
  • Wireless sensor networks (WSNs) consist of a lot of sensor nodes having limited transmission range. So multi-hop transmission is used for communication among nodes but the multi-hop transmission degrade the end-to-end reliability. Multipath routing and opportunistic routing are typical approaches for guaranteeing end-to-end reliability in WSNs. The existing protocols improve the reliability effectively in small networks but they suffer from rapid performance degradation in large networks. In this paper, we propose the opportunistic multipath routing protocol for guaranteeing end-to-end reliability in large WSNs. Applying multipath routing and opportunistic routing simultaneously is very hard because their conflicting routing features. The proposed protocol applies these approaches simultaneously by section-based routing thereby enhancing end-to-end reliability. Additionally, the proposed protocol guarantees required reliability by the concept of section reliability. The section reliability over a certain level might satisfy required end-to-end reliability. Our simulation results show that the proposed protocol is more suitable for guaranteeing reliability than existing protocols in large-scale WSNs.

On Performance Analysis of Position Based Routing Algorithms in Wireless Networks

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.538-546
    • /
    • 2010
  • This paper presents an overview of position-based routing algorithms. We analyze performances of routing algorithms such as Hybrid Opportunistic Forwarding (HOF), Opportunistic multi-hop routing (ExOR), Location based Geocasting and Forwarding (LGF), and Greedy Forwarding in nearest with forward Progress (GFP) routing algorithms to find the best one in terms of packet error rate and throughput efficiency over effects of fading and noise variance in wireless networks. The analyses in closed form expressions are confirmed by the simulation results, which fully agree to analysis results. Additionally, the simulation results indicate significant differences among algorithms when varying the average SNR or the number of relays.

OBPF: Opportunistic Beaconless Packet Forwarding Strategy for Vehicular Ad Hoc Networks

  • Qureshi, Kashif Naseer;Abdullah, Abdul Hanan;Lloret, Jaime;Altameem, Ayman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2144-2165
    • /
    • 2016
  • In a vehicular ad hoc network, the communication links are unsteady due to the rapidly changing topology, high mobility and traffic density in the urban environment. Most of the existing geographical routing protocols rely on the continuous transmission of beacon messages to update the neighbors' presence, leading to network congestion. Source-based approaches have been proven to be inefficient in the inherently unstable network. To this end, we propose an opportunistic beaconless packet forwarding approach based on a modified handshake mechanism for the urban vehicular environment. The protocol acts differently between intersections and at the intersection to find the next forwarder node toward the destination. The modified handshake mechanism contains link quality, forward progress and directional greedy metrics to determine the best relay node in the network. After designing the protocol, we compared its performance with existing routing protocols. The simulation results show the superior performance of the proposed protocol in terms of packet delay and data delivery ratio in realistic wireless channel conditions.

Timed Bargaining Based Routing Protocol for the Vehicular Ad-Hoc Network (차량 애드 혹 네트워크 환경에서 제한시간 협상 게임 기반의 확률적 라우팅 프로토콜 기법)

  • Jang, Hee Tae;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.3
    • /
    • pp.47-54
    • /
    • 2016
  • In this paper, we propose a new opportunistic routing scheme based on timed bargaining game. The proposed algorithm effectively formulates the opportunistic routing mechanism as an repeated bargaining model using timed learning method. Additionally, we formulate a new contention window adjusting scheme for reduce collision rate. Simulation results indicate that the proposed scheme has excellent performance than other existing schemes under widely diverse VANET environments.

Efficient Multicast Tree Construction in Wireless Mesh Networks

  • Nargesi, Amir-Abbas;Bag-Mohammadi, Mozafar
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.613-619
    • /
    • 2014
  • Multicast routing algorithms designed for wireline networks are not suitable for wireless environments since they cannot efficiently exploit the inherent characteristics of wireless networks such as the broadcast advantage. There are many routing protocols trying to use these advantages to decrease the number of required transmissions or increase the reception probability of data (e.g., opportunistic routing).Reducing the number of transmissions in a multicast tree directly decreases the bandwidth consumption and interference and increases the overall throughput of the network. In this paper, we introduce a distributed multicast routing protocol for wireless mesh networks called NCast which take into account the data delivery delay and path length when constructing the tree. Furthermore, it effectively uses wireless broadcast advantage to decrease the number of forwarding nodes dynamically when a new receiver joins the tree.Our simulation results show that NCast improves network throughput, data delivery ratio and data delivery delay in comparison with on demand multicast routing protocol. It is also comparable with multichannel multicast even though it does not use channeling technique which eliminates the interference inherently.