• Title/Summary/Keyword: Oplismenus Undulatifolius

Search Result 32, Processing Time 0.014 seconds

Effects of Air Pollution on the Forest Vegetation Structure in the Vicinity of Sasang Industrial Complex in Korea (사상공단(沙上工團)의 대기오염(大氣汚染)이 주변(周邊) 산림(山林)의 식생구조(植生構造)에 미치는 영향(影響))

  • Kim, Jeom Soo;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • The object of this study was to examine the effects of air pollution on forest vegetation structure in the vinicity of Sasang industrial complex in Korea. Forest vegetation structure was investigated at 19 sample plots surrounding industrial complex and at one site away from industrial complex as a control. The results obtained were as follows; 1. For analysis of vegetation structure, upperstory of forests was mostly consisted of Pinus thunbergii, and partly of Alnus firma and Robinia pseudoacacia. In midstory, major components were Pinus thunbergii, Robinia pseudoacacia, Rhus trichocarpa, Rhus chinensis and Styrax japonica, In lower story, Pinus thunbergii was a minor component, while Robinia pseudoacacia, Quercus serrata, Rhus trichocarpa. and Rhododendron yedoense var. poukhanense which were known to be resistant to air pollution were found in large number. Especially, importance percentage of Robinia pseudoacacia was high, while that of Rhododendron mucronulatum was low in surrounding industrial complex. 2. For woody plants, number of species, species diversity and similarity index in industrial complex, were not significantly different from those in control plot. 3. For herbs, Oplismenus undulatifolius appeared in large number in most plots. The $SDR_3$ of Miscanthus sinensis, Calamagrostis arundinacea, Paederia scandens, Spodiopogon cotulifer and Carex humilis were high, but that of Aster scaber, Saussurea seoulensis, Solidago virgaaurea var. asiatica and Prunella vulgaris var. lilacina were low in the vicinity of industrial complex. 4. Number of herb species decreased to below 10 species at surrounding industrial complex as compared to 20 species in the control plot. In addition species diversity, and similarity index in the industrial complex were lower than those in control plot. It may be concluded that Pinus thunbergii forests in industrial complex consists of tree species resistant to air pollution, and that composition of woody vegetation in industrial complex was not much different from control plot, while composition of herbs was already quite different between the two plots. Forest vegetation structure, therefore, may change with time due to air pollution in the industrial complex.

  • PDF

Sequential Changes in Understory Vegetation Community for 15 Years in the Long-Term Ecological Research Site in Central Temperate Broad-leaved Deciduous Forest of Korea (한반도 온대중부 낙엽활엽수림 장기생태조사지에서 15년간 하층식생 군집의 시계열적 변화)

  • Kim, Min-Su;Yun, Soon-Jin;Park, Chan-Woo;Choi, Won-Il;Chun, Jung-Hwa;Lim, Jong-Hwan;Bae, Kwan-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.3
    • /
    • pp.223-236
    • /
    • 2021
  • This study aims to provide basic data for the systematic conservation and efficient management of forest ecosystems by analyzing changes in understory vegetation of temperate broad-leaved deciduous forests. One-hectare permanent survey plot, consisting of 100 subplots sized 10 × 10 meters, was installed in Gwangneung forest in Pocheon, Gyeonggi-do in 2003. The state of stands and the understory vegetation in the permanent survey plot were examined at a 5-year interval from 2003 to 2018. The vascular plants found in the survey area were 56 families, 128 genera, 176 species, 18 variants, 4 varieties, and 1 subspecies, for a total of 199 taxa. The number of species in both the shrub layer and the herbaceous layer showed a tendency to decrease with time. The MRPP-tests showed a significantly differing species composition of the shrub layer in all years except 2008-2013, whereas significant differences were found in all years concerning the herbaceous layer. As for the average importance value, Euonymus oxyphyllus (18.23%), Acer pseudosieboldianum (16.48%), and Callicarpa japonica (13.85%) were dominant in the shrub layer, while Ainsliaea acerifolia (23.41%), Disporum smilacinum (9.45%), and Oplismenus undulatifolius (5.62%) were dominant in the herbaceous layer. In the shrub layer, the richness of Smilax china, Lonicera subsessilis, and Philadelphus schrenkii was high when the basal area and the stand density of an upper layer were high. By contrast, smaller basal area and stand density were associated with the richness of Acer pseudosieboldianum, Deutzia glabrata, Morus bombycis, and Cornus kousa. Furthermore, it was found out that the impact of the basal area and the stand density on the herbaceous layer decreased over time, while the herb layer's species composition was greatly affected by cover degrees of Euonymus oxyphyllus and Acer pseudosieboldianum in the shrub layer. In conclusion, the number of species in the understory vegetation in Gwangneung forest is continuously decreasing, thus implying that species diversity, basal area, and stand density of an upper layer can influence the species composition in understory vegetation.