• Title/Summary/Keyword: Operator safety

Search Result 524, Processing Time 0.031 seconds

A Study on Efficient Operation of Safety Management System for Airport Organization (공항운영조직의 안전관리시스템(SMS) 운영 효율성 향상에 관한 연구)

  • An, Gyeong-Ryeong;Jang, Jing-Lun;Jang, Jung-Hwan;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Continued efforts to build up Safety Management System(SMS) and to improve its efficiency in airports, to which customers have direct access, are taken for granted due to continuous development of the aviation industry in both quantity and quality and rapid growth of air transportation market. This thesis proposed efficient operation methods of SMS for domestic airport organizations including Incheon International Airport(IIA), the largest airport in South Korea, aiming at strengthening aviation safety from the perspective of airport operators who play a pivotal role in service provider SMS. Those are consolidation of the existing safety management organizations and various improvements to promote voluntary incident reporting system. To draw a proposal for the improvements, conducted a research on domestic safety management status, carried out an analysis on operating conditions and did a research on ICAO regulations, domestic legal system as well as statistics data. Relevant studies and researches were also gathered and analyzed. A search for further improvements can also help increase operational efficiency and promoting a higher-level of safety awareness among operators can establish mature safety culture at airports.

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

Assessment Procedure of Safety Integrity Level(SIL) Based on Flowchart (플로우차트 기반 안전무결성수준 평가 절차)

  • Kim, Gi-Young;Ko, Byeong-Gak;Jang, Joong-Soon;Chan, Sung-Il
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.107-122
    • /
    • 2010
  • Functional safety is the part of the overall safety of a system that depends on the system or equipment operating correctly in response to its inputs, including the safe management of likely operator errors, hardware failures, systematic failures, and environmental changes. One of the essential concepts of functional safety is Safety Integrity Level(SIL). It is defined as a relative level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. In this paper, each element of SIL assessment will be defined. Based on each element, specific process of SIL selection will be established by using flowchart. The flowchart provides a SIL assessment guideline for functional safety engineers. The proposed theory will be verified by applying to a oil refining plant for SIL assessment.

Applying the TOC Thinking Process: A Study for Stabilization of Integrated Railway Safety Audit System (TOC Thinking Process를 활용한 철도종합안전심사 안정화방안 연구)

  • Oh, In-Tack;Jang, Seong-Yong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.990-1003
    • /
    • 2006
  • To cope with the change of railway safety environment and to prevent the catastrophic accident, the railway safety management system was established through the legislation of railway safety rules. And to audit and evaluate the accomplishment of railway safety rules by the railway operators, the Integrated Railway Safety Audit System(IRSAS) has been conducting. This study find out the strategy to stabilize the IRSAS by applying Theory of Constraints(TOC) Thinking Process. For meeting the IRSAS's goal of effective levelling up of railway safety, the two necessary conditions, 1)the secure of substantial safety through the IRSAS and 2)the execution of efficient IRSAS, should be fulfilled. Estimated undesirable effects(UDEs) from the IRSAS were identified, and 3 of them were selected for creating the requisite conflict clouds. Entities from these conflict clouds were synthesized into a core conflict cloud that foamed the base of Current Reality Tree. The strategic direction for change extracted from the conflict cloud is the reinforcement of IRSAS preparation system including the level up of operator's self audit, the deepening of preliminary survey, the establishment of complementing system of audit check list and the build up of auditor's specialization. These injection were logically validated via a Future Reality Tree and expected to be confirmed by further progressing of IRSAS.

  • PDF

The Strategy for Intelligent Integrated Instrumentation and Control System Development

  • Kwon, Kee-Choon;Ham, Chang-Shik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.153-158
    • /
    • 1995
  • All of the nuclear power plants in Korea we operating with analog instrumentation and control (I&C) equipment which are increasingly faced with frequent troubles, obsolescence and high maintenance expenses. Electrical and computer technology has improved rapidly in recent years and has been applied to other industries. So it is strongly recommended we adopt modern digital and computer technology to improve plant safety and availability. The advanced I&C system, namely, Integrated Intelligent Instrumentation and Control System (I$^3$CS) will be developed for beyond the next generation nuclear power plant. I$^3$CS consists of three major parts, the advanced compact workstation, distributed digital control and protection system including Automatic Start-up/shutdown Intelligent Control System (ASICS) and the computer-based alarm processing and operator support system, namely, Diagnosis, Response, and operator Aid Management System (DREAMS).

  • PDF

A Study on Simulation of the Human and Informational Effect of Ship's controllability (선박제도에 영향을 미치는 인간 및 정보요인에 관한 시뮬레이션 연구)

  • 조현영;김완수
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 1994
  • The safety of the ship manoeuver is dependent not only on the inherent characteristics of the ship itself and environmental conditions, but also on the skill and experience of the ship operator. As the ship operator's judgement is related to his experience and skill, based on outside information, piloted controllability also depends upon the effectiveness, accuracy and reliability of various information which is obtainable from navigational equipments and aids to navigation that are available to the ship ope-rator. Although these factors, human factors and informational factors, have been pointed out as major factors which affect the controllability of a ship, there was no a comprehensive examination on the effect of these two factors. In this thesis, therefore, an attempt was made to examine whether or not there is clear indication that these two factors affect the controllability of a ship in reality. Experiments were conducted using the port design simulator of the Korea Maritime University.

  • PDF

Chip type discrimination by pattern recognition technique (패턴인식 기술에 의한 칩형태 판별)

  • Kang, Jong-Pyo;Choi, Man-Sung;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.32-38
    • /
    • 1988
  • Apaptive cintrol of machine tool is aimed to change cutting state satis- factorily without aid of a machine operator, if the cuting state is abnomal such as formation of tangled ribbon type chip, built-up edge and generation of chattering and so on. Among these the recognition of chip type is one of the most important since it has imlications relate to : 1. Safety of operator 2. Stoppage of work due to entanglment in tool and workpiece of chip 3. Problem of producted chip control In this paper the chip type is discriminatied by the pattern recognition technique. It is found that the power spectrum of cutting force for each chip type has it's own special pattern. Linear discriminant function for the recognition of the chip type is obtained by learning process. The discriminant function can be the basis of adaptive control for the rate of success of recognition by pattern recognition technique is at leasthigher than 83%.

  • PDF

A Proposal on the Marine Traffic Supporting System in VTS area

  • Lee, Hyong-Ki;Chang, Seong-Rok;Jeong, Gi-Nam;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.9
    • /
    • pp.693-698
    • /
    • 2010
  • In port and its approach channel, traffic accidents such as collision, aground, minor collision have reached about 77% of total marine casualty in the area. In this paper, an attempt to enhance the safe navigation was proposed by offering marine traffic supporting system which helps VTS operator assist vessel effectively with the quantitative assessment on difficulty of each vessel. The system collects navigation data from onboard AIS, assesses the data in assessment mode to analyze the navigation difficulties of each vessel and displays the degree of danger of each vessel on the ECDIS in real-time to decide the intervention time or order of priority for VTS operator. The effectiveness of the system was verified by the VTS operators in Korea.

Development of Overload Prevention Algorithm for the Crane Safety (크레인 안전을 위한 과부하 방지 알고리즘 개발)

  • Lee, Sang Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.11-19
    • /
    • 2012
  • Crane systems have been widely used for transportation in building sites, ports, nuclear wastehandling operation and so on. As a typical underactuated system, an overhead crane has such merits as high flexibility and less energy consumption. And it's getting more types of cranes, universally applicable algorithms should be developed. That is the design and development of scalable algorithms are required. Developed algorithms can be used for the controller and crane overload protection that meets the requirements of the algorithm are presented. These algorithms force the state to warn the operator and stops the operation of equipment. In this paper, crane overload conditions that can cause damage to alert the operator, and to limit the operation of equipment overload protection algorithm is presented.

Strategies for the Automatic Decision of Railway Shunting Routes Based on the Heuristic Search Method (휴리스틱 탐색기법에 근거한 철도입환진로의 자동결정전략 설계)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.283-289
    • /
    • 2003
  • This paper proposes an expert system which can determine automatically the shunting routes corresponding to the given shunting works by considering totally the train operating environments in the station. The expert system proposes the multiple shunting routes with priority of selection based on heuristic search strategy. Accordingly, system operator can select a shunting route with the safety and efficiency among the those shunting routes. The expert system consists of a main inference engine and a sub inference engine. The main inference engine determines the shunting routes with selection priority using the segment routes obtained from the sub inference engine. The heuristic rules are extracted from operating knowledges of the veteran route operator and station topology. It is implemented in C computer language for the purpose of the implementation of the inference engine using the dynamic memory allocation technique. And, the validity of the builted expert system is proved by a test case for the model station.