• Title/Summary/Keyword: Operator Workload

Search Result 33, Processing Time 0.017 seconds

Study on Practical Use of Air Vehicle Test Equipment(AVTE) for UAV Operation Support (무인항공기 운용 지원을 위한 비행체 점검장비 활용에 관한 연구)

  • Song, Yong-Ha;Go, Eun-kyoung;Kwon, Sang-Eun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.320-326
    • /
    • 2021
  • AVTE(Air Vehicle Test Equipment) is an equipment to inspect and check the status of on-board aircraft LRUs(Line Replacement Units) before and after flight for performing successful UAV(Unmanned Aerial Vehicle) missions. This paper suggests utilization of the AVTE as an operation support-equipment by implementing several critical functions for UAV-operation on the AVTE. The AVTE easily sets initialization(default) data and compensates for the installation and position errors of the LRUs which provide critical mission data and situation image with pilots without additional individual operation support-equipment. Major fault list and situation image data could be downloaded after flight using the AVTE in the event of UAV emergency situation or unusual occurrence on duty as well. We anticipate the suggested operational approach of the AVTE could dramatically reduce the cost and man power for design and manufacture of additional operation support equipment and effectively diminish workload of the operator.

Development of Easy-to-Use Crane-Tip Controller for Forestry Crane

  • Ki-Duck, Kim;Beom-Soo, Shin
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • Forestry crane work in a forest harvester or forwarder is regarded as one of most hard work requiring a very high level of operation skill. The operator must handle two or more multi-axes joysticks simultaneously to control the multiple manipulators for maneuvering the crane-tip to its intended location. This study has been carried out to develop a crane-tip controller which can intuitively maneuver the crane-tip, resulting in improving the productivity by decreasing the technical difficulty of control as well as reducing the workload. The crane-tip controller consists of a single 2-axis joystick and a control algorithm run on microcontroller. Lab-scale forestry crane was constructed using electric cylinders. The crane-tip control algorithm has the crane-tip follow the waypoints generated on the given path considering the dead band region using LBO (Lateral Boundary Offset). A speed control gain to change the speed of relevant cylinders relatively is applied as well. By the P (Proportional) control within the control interval of 20 msec, the average error of crane-tip control on the predefined straight path turned out to be 14.5 mm in all directions. When the joystick is used the waypoints are generated in real time by the direction signal from the joystick. In this case, the average error of path control was 12.4 mm for straight up, straight forward and straight down movements successively at a certain constant speed setting. In the slant movement of crane-tip by controlling two axes of joystick simultaneously, the movement of crane-tip was controlled in the average error of 15.9 mm when the crane-tip is moved up and down while moving toward forward direction. It concluded that the crane-tip control was possible using the control algorithm developed in this study.

Research on Prediction of Maritime Traffic Congestion to Support VTSO (관제 지원을 위한 선박 교통 혼잡 예측에 관한 연구)

  • Jae-Yong Oh;Hye-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.212-219
    • /
    • 2023
  • Vessel Traffic Service (VTS) area presents a complex traffic pattern due to ships entering or leaving the port to utilize port facilities, as well as ships passing through the coastal area. To ensure safe and efficient management of maritime traffic, VTS operators continuously monitor and control vessels in real time. However, during periods of high traffic congestion, the workload of VTS operators increases, which can result in delayed or inadequate VTS services. Therefore, it would be beneficial to predict traffic congestion and congested areas to enable more efficient traffic control. Currently, such prediction relies on the experience of VTS operators. In this paper, we defined vessel traffic congestion from the perspective of a VTS operator. We proposed a method to generate traffic networks using historical navigational data and predict traffic congestion and congested areas. Experiments were performed to compare prediction results with real maritime data (Daesan port VTS) and examine whether the proposed method could support VTS operators.