• Title/Summary/Keyword: Operational safety assessment

Search Result 139, Processing Time 0.029 seconds

A Study on the Collecting Method of Reliability Database for Gas Facilities (가스설비의 신뢰도데이터 수집방법에 관한 연구)

  • Rhie, Kwang-Won;Yoon, Ik-Keun;Han, Sang-Tae;Oh, Sin-Kyu;Kim, Tae-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.37-44
    • /
    • 2008
  • The safety assessment for facility industry is now being periodically performed. For the purpose of scientific safety management, QRA(Quantitative Risk Assessment) is also being performed, and reliability data of the facilities is essential to perform the assessment. Generally, the existing safety assessment is performed by using the values announced in other industry processes, which result in the drop of reliability. In order to solve this problem, there is an urgent need to establish reliability database for the facilities. The most appropriate method is to perform a direct reliability analysis towards the facilities undergoing safety assessment. In this study, in compliance with the assessment method and procedure of OREDA-2002 handbook, the facility reliability data are collected, which include the calendar time and operational time in terms of different facility items, the number of failures in terms of different failure mode, the mean, standard deviation, lower limit and upper limit of failure rate, and the failure rate. And the data process method for this special occasion is also proposed when the number of failure is 0.

A Study on the Operational Events of Domestic Nuclear Power Plants for Multi-unit Risk (원전 다수기 리스크 평가를 위한 국내 원전 사건이력 조사 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.167-174
    • /
    • 2019
  • Compared to a single nuclear power plant (NPP) risk, the commonalities existing in the multiple NPPs attribute the characteristics of the multi-unit risk. If there is no commonality among the multiple NPPs, there will be no dependency among the risks of multiple NPPs. Therefore, understanding the commonality causing multi-unit events is essential to assessing the multi-unit risk, and identifying the characteristics of the multi-unit risk is necessary not only to select the scope and method for the multi-unit risk assessment, but also to analyze the data of the multi-unit events. In order to develop Korea-specific multi-unit risk assessment technology, we analyze the multi-unit commonalities included in the operational experiences of domestic NPPs. We identified 58 cases of multi-unit events through detailed review of domestic nuclear power plant event reports over the past 10 years, and the multi-unit events were classified into six commonalities to identify Korea-specific characteristics of multi-unit events. The identified characteristics can be used to understand and manage domestic multi-unit risks. It can also be used as a basis for modeling multi-unit events for multi-unit risk assessment.

Derivation of a new dose constraint applicable to radioactive discharges from Korean nuclear power plants through retrospective dose assessment

  • Kim, Soyun;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3660-3671
    • /
    • 2022
  • A new methodology to derive a dose constraint for radioactive effluent from a unit of nuclear power plant (NPP) through retrospective assessment was developed to reflect operational flexibility in line with international standards. The new dose constraint can retain the safety margin between the offsite dose and the past dose constraints. As case studies, the new approach was applied to 24 Korean NPPs to address the limitations of the existing seven dose constraints that do not fully comply with current international radiation protection standards. Therefore, an effective dose constraint for Korean NPPs was proposed as no less than 0.15 mSv/y, which is comparable to the international practices and previous studies (0.05-0.3 mSv/y). Although the lower bound of the equivalent dose constraint was calculated as 0.17 mSv/y, it is not proposed in this study since the compliance with the derived effective dose constraint can prevent accompanied equivalent doses to any organs from exceeding equivalent dose limits. The new framework and the case studies are expected to contribute toward and support the revision of existing dose constraints for radioactive effluent from NPPs, ensuring better compliance with the current international safety standards as well as reflect the operational flexibility in practice.

Chemical Accidents Response Information System(CARIS) for the Response of Atmospheric Dispersion Accidents in association with Hazardous Chemicals (유해화학물질 관련 대기오염사고 대응을 위한 화학물질사고대응정보시스템 (CARIS))

  • Kim, Cheol-Hee;Park, C.J.;Park, J.H.;Im, C.S.;Kim, M.S.;Park, C.H.;Chun, K.S.;Na, J.G.
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2003
  • The emergency response modeling system CARIS has been developed at CCSM (Center for Chemical Safety Management), NIER (National Institute of Environmental Research) to track and predict dispersion of hazardous chemicals for the environmental decision support in case of accidents at chemical or petroleum companies in Korea. The main objective of CARIS is to support making decision by rapidly providing the key information on the efficient emergency response of hazardous chemical accidents for effective approaches to risk management. In particular, the integrated modeling system in CARIS consisting of a real-time numerical weather forecasting model and air pollution dispersion model is supplemented for the diffusion forecasts of hazardous chemicals, covering a wide range of scales and applications for atmospheric information. In this paper, we introduced the overview of components of CARIS and described the operational modeling system and its configurations of coupling/integration in CARIS. Some examples of the operational modeling system is presented and discussed for the real-time risk assessments of hazardous chemicals.

Operational Effects of Special Roundabouts at Large-Scale Rotaries (대형로터리에서의 특수 회전교차로 운영효과)

  • Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.109-117
    • /
    • 2016
  • PURPOSES : The goal of this study is to analyze the operational effects of special roundabouts at large-scale rotaries in Korea. In pursuing the above, this study gives particular attention to comparing standard roundabouts with special roundabouts. METHODS : This study reviews the various types of roundabouts, creates 270 scenarios, builds networks, and comparatively analyzes the operational effects by using VISSIM simulation model and SSAM(Surrogate Safety Assessment Model). RESULTS : First, the operational effects of standard and signalized roundabouts were analyzed, and it was determined that standard roundabouts are the best in the case of under-saturated traffic volume, and signalized roundabouts are the best in the case of over-saturated traffic volume. Second, the operational benefits of a Turbo roundabout were evaluated to be generally lower than the benefits of a standard roundabout, and the benefits of a Turbo roundabout increase when right-turn traffic volume increases. Finally, the safety conflicts of a Turbo roundabout were determined to be the least and decrease when right-turn traffic volume increases. CONCLUSIONS : This study suggests that Turbo roundabouts rank highest for safety, and signalized roundabouts are best for over-saturated traffic volume. This study can be expected to provide some implications for policy decision-making.

A study on the safety management method based on the risk assessment of KORAIL's level-crossing accidents (선진 위험도 평가 기반의 건널목사고 안전관리 전략 연구)

  • Jung, Do-Won;Wang, Jong-Bae;Lhim, Jea-Eun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1732-1750
    • /
    • 2010
  • Operation of KORAIL's level crossing is in charge of KORAIL. As taking over existing level crossing to KORAIL, they do not conduct risk assessments, so we do not know about any possibilities of inner risk. And present operation of safety of the level crossing is just regular checking of reaction and functions of safety equipments physically, we need to react to the changes of what's going on around of level crossing and incestigation of traffic flow and surrounding conditions more spontaneously. So, we have to prepare the strategies against accidents of level crossing cost-effectively based on regular risk assessments for sustainable safety improvements and overcome operational problems of present level crossing's safety. Here, we're going to investigate the level of safety level and present risk factors of the level crossing using risk assessments for accidents/error of the equipments to show operational strategies of level crossing based on risk assessments.

  • PDF

An Evaluative Study of the Operational Safety of High-Speed Railway Stations Based on IEM-Fuzzy Comprehensive Assessment Theory

  • Wang, Li;Jin, Chunling;Xu, Chongqi
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1064-1073
    • /
    • 2020
  • The general situation of system composition and safety management of high-speed railway terminal is investigated and a comprehensive evaluation index system of operational security is established on the basis of railway laws and regulations and previous research results to evaluate the operational security management of the high-speed railway terminal objectively and scientifically. Index weight is determined by introducing interval eigenvalue method (IEM), which aims to reduce the dependence of judgment matrix on consistency test and improve judgment accuracy. Operational security status of a high-speed railway terminal in northwest China is analyzed using the traditional model of fuzzy comprehensive evaluation, and a general technique idea and references for the operational security evaluation of the high-speed railway terminal are provided. IEM is introduced to determine the weight of each index, overcomes shortcomings of traditional analytic hierarchy process (AHP) method, and improves the accuracy and scientificity of the comprehensive evaluation. Risk factors, such as terrorist attacks, bad weather, and building fires, are intentionally avoided in the selection of evaluation indicators due to the complexity of risk factors in the operation of high-speed railway passenger stations and limitation of the length of the paper. However, such risk factors should be considered in the follow-up studies.

Concept Design of Fire Safety Module for SV20 Service in the Korean e-Navigation System

  • Kim, Byeol;Moon, Serng-Bae;Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.42 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • The Korean e-Navigation system is a Korean approach to correspond with implementation of IMO e-Navigation. It provides five services, among them SV20 service, a ship remote monitoring system that collects and processes sensor information related to fire, navigation, and seakeeping performance safety. The system also detects abnormal conditions such as fires, capsizing, sinking, navigation equipment failure during navigation, and calculates the safety index and determines the emergency level. According to emergency level, it provides appropriate emergency response guidance for the onboard operator. The fire safety module is composed of three sub-modules; each module is the safety index sub-module, the emergency level determination sub-module and emergency response guidance sub-module. In this study, operational concept of the fire safety module in SV20 service is explained, and fire safety assessment factors are estimated, to calculate the fire safety index. Fire assessment factors included 'Fire detector position factor,' 'Smoke diffusion rate factor,' and 'Fire-fighting facilities factor.'

OPERATOR BEHAVIORS OBSERVED IN FOLLOWING EMERGENCY OPERATING PROCEDURE UNDER A SIMULATED EMERGENCY

  • Choi, Sun-Yeong;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • A symptom-based procedure with a critical safety function monitoring system has been established to reduce the operator's diagnosis and cognitive burden since the Three-Mile Island (TMI) accident. However, it has been reported that a symptom-based procedure also requires an operator's cognitive efforts to cope with off-normal events. This can be caused by mismatches between a static model, an emergency operating procedure (EOP), and a dynamic process, the nature of an ongoing situation. The purpose of this study is to share the evidence of mismatches that may result in an excessive cognitive burden in conducting EOPs. For this purpose, we analyzed simulated emergency operation records and observed some operator behaviors during the EOP operation: continuous steps, improper description, parameter check at a fixed time, decision by information previously obtained, execution complexity, operation by the operator's knowledge, notes and cautions, and a foldout page. Since observations in this study are comparable to the results of an existing study, it is expected that the operational behaviors observed in this study are generic features of operators who have to cope with a dynamic situation using a static procedure.