• Title/Summary/Keyword: Operational modes

Search Result 206, Processing Time 0.024 seconds

Pilot Plant Study on Biological Nutrient Removal of Wastewater

  • Ahn, Sang-Jin;Kim, Geon-Heung;Ahn, Bok-Kyoun
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.99-106
    • /
    • 1990
  • An extensive biological nutrient removal pilot plant study of anoxic/anaerobic/ aerobic treatment process was conducted to eastblish an optimum operational mode using primary dffluent. Two operational modes, (1) Qr/Q was 3.0 and maintaining EMLSS of 3100 mg/L in which the best operational results were obtained from previous bench scale study using synthetic wastewater (2) Qr/Q was 0.5 and EMLSS of 2200 mg/L which was compatible with the main plant, were Compared and evaluated for removal of nitrogen and/or phosphorous under field conditions. The nitrogen removal increased with increasing recycle ratios, but the phosphorous removal revealed more consistent results with 83percent removal efficiency in the second mode compared with 80 percent in the first mode. Above all, the two modes equally showed good BOD and nitrogen removals by nitrification-denitrification processes. It was also observed that no scum formed in the pilot plant and the sludge exhibited excellent settling characteristic all the time. The modified biological nutrient removal train can be adopted to the main plant without any major changes of their operational modes.

  • PDF

Analysis of Operational Modes of Charger using Low-Voltage AC Current Source considering the Effects of Parasitic Components (기생성분을 고려한 저전압 AC 전류원 충전회로의 동작모드 해석)

  • Chung Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 2005
  • A new converter to transfer energy from a low-voltage AC current source to a battery is proposed. It is focused to find operational modes of the converter. The low-voltage AC current source is an equivalent of the piezoelectric generator, which converts the mechanical energy to the electric energy. The converter consists of a full-bridge MOSFET rectifier and a MOSFET boost converter in order to make the converter small and efficient. The operational principle and modes of the converter are investigated with the consideration of effects of the parasitic capacitances of MOSFETs and diode. The results are proved with simulation studies using PSIM and Pspice.

Investigating Buck DC-DC Converter Operation in Different Operational Modes and Obtaining the Minimum Output Voltage Ripple Considering Filter Size

  • Babaei, Ebrahim;Mahmoodieh, Mir Esmaeel Seyed;Sabah, Mehran
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.793-800
    • /
    • 2011
  • This paper investigates the operational modes of buck dc-dc converters and their energy transmission methods. The operational modes of such converters are classified in two types, discontinuous conduction mode (DCM) and continuous conduction mode (CCM). In this paper, the critical inductance relation of DCM and CCM is determined. The equations of the output voltage ripple (OVR) for each mode are obtained for a specific input voltage and load resistance range. The maximum output voltage ripple (MOVR) is also obtained for each mode. The filter size is decreased and the minimum required inductance value is calculated to guarantee the minimization of the MOVR. The experimental and simulation results in PSCAD/EMTDC prove the correctness of the presented theoretical concepts.

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Operational modal analysis of structures by stochastic subspace identification with a delay index

  • Li, Dan;Ren, Wei-Xin;Hu, Yi-Ding;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.187-207
    • /
    • 2016
  • Practical ambient excitations of engineering structures usually do not comply with the stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace identification algorithms and determination of the delay index are discussed. Numerical simulations on a four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise ambient excitations.

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

High School Students' Preferences of Concrete and Formal Operational Levels of Instructions in CAI (구체적 조작수준과 형식적 조작수준의 CAI 형태에 대한 학생의 선호경향)

  • Kim, Young-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.6 no.2
    • /
    • pp.9-13
    • /
    • 1986
  • This study was designed to investigate students' preferences of instructional modes in CAI which have concrete of formal operational level instructions. Thirty five students of the high school in America were assessed using Longeot test and were given CAI material on the Apple II e computer. The results of this study showed that students who were only capable of functioning at the concrete level of operations frequently preferred to attempt formal operational level instructions for which they were not capable of success. Further, formal operational students frequently preferred concrete operational instructions. There was also no significant difference in the selection of formal operational level of instructions between concrete and formal operational students. There was also no significant correlation between the number of selected formal operational level instructions and the Longeot test score. These results suggested the student's preference to a cognitive developmental level of instruction in CAI was independent of his or her cognitive developmental level.

  • PDF

A new method for safety classification of structures, systems and components by reflecting nuclear reactor operating history into importance measures

  • Cheng, Jie;Liu, Jie;Chen, Shanqi;Li, Yazhou;Wang, Jin;Wang, Fang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1336-1342
    • /
    • 2022
  • Risk-informed safety classification of structures, systems and components (SSCs) is very important for ensuring the safety and economic efficiency of nuclear power plants (NPPs). However, previous methods for safety classification of SSCs do not take the plant operating modes or the operational process of SSCs into consideration, thus cannot concentrate on the safety and economic efficiency accurately. In this contribution, a new method for safety classification of SSCs based on the categorization of plant operating modes is proposed, which considers the NPPs operating history to improve the economic efficiencies while maintaining the safety. According to the time duration of plant configurations in plant operating modes, average importances of SSCs are accessed for an NPP considering the operational process, and then safety classification of SSCs is performed for plant operating modes. The correctness and effectiveness of the proposed method is demonstrated by application in an NPP's safety classification of SSCs.

Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

Relationships between Piagetian Congnitive Modes and Integrated Science Process Skills for High School Students (고교생의 논리적사고력과 과학탐구 기능 사이의 상관관계에 관한 연구)

  • Lim, Cheong-Hwan;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.11 no.2
    • /
    • pp.23-30
    • /
    • 1991
  • The purpose of this study is to investigate the interrelationships on integrated science process skills and Piagetian cognitive modes for high school students according to the different cognitive reasoning levels. About 509 high school students were randomly selected for the samples of this study. They were identified as concrete, transitional and formal operational stage with the scores of GALT(Group Assessment of Logical Thinking) developed by Roadrangka, Yeaney and Padilla(1982), and TIPS II(Test of Integrated Process Skills) developed by Burns, Wise and Okey(1983). The result of this study were showed that about 11.8% of the samples were in the concrete operational stage and about 24.4% of the samples were in the transitional stage, while about 63.8% of them were in the formal operational stage. It was also found that the achivement scores of the science process skills increase in accordance with the cognitive reasoning levels. The value of the correlation coefficient between science process skills and cognitive reasoning abilities was 0.49, which was significant at the 0.05 level. This finding seems to support previous research that the student's cognitive reasoning abilities appeared to have influenced student's scores of the science process skills No differences to the logical reasoning ability between male and female students according to each cognitive level were found except formal operational stage.

  • PDF