• Title/Summary/Keyword: Operational modeling system

Search Result 221, Processing Time 0.035 seconds

Development of an object-oriented model management framework for computer executable algebraic modeling languages (최적화 모델링 언어를 위한 객체 지향 모형 관리 체계의 개발)

  • 허순영
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.43-63
    • /
    • 1994
  • A new model management framework is proposed to accommodate wide-spreading algebraic modeling languages (AMLs), and to facilitate a full range of model manipulation functions. To incorporate different modeling conventions of the leading AMLs (AMPL, GAMS, and SML) homogeneously, generic model concepts are introduced as a conceptual basis and are embodied by the structural and operational constructs of an Object-Oriented Database Management System(ODBMS), enabling the framework to consolidate components of DSSs(database, modelbase, and associated solvers) in a single formalism effectively. Empowered by a database query language, the new model management framework can provide uniform model management commands to models represented in different AMLs, and effectively facilitate integration of the DSS components. A prototype system of the framework has been developed on a commercial ODBMS, ObjectStore, and a C++ programming language.

  • PDF

Process Modeling of the Coal-firing Power Plant as a Testbed for the Improvement of the System and Equipment (화력발전 시스템 및 설비 개선 실증을 위한 열물질정산 공정모델 개발)

  • Ahn, Hyungjun;Choi, Seukcheun;Lee, Youngjae;Kim, Beom Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • Heat and mass balance process modeling has been conducted for a coal-firing power plant to be used as a testbed facility for development of various plant systems and equipment. As the material and design of the boiler tube bundle and fuel conversion to the biomass have become major concerns, the process modeling is required to incorporate those features in its calculation. The simulation cases for two different generation load show the satisfying results compared to the operational data from the actual system. Based on the established process conditions, the hypothetical case using wood pellet has also been simulated. Additional calculations for the tube bundle has been conducted regarding the changes in the tube material and design.

Analysis On Optimized WNW Topology And Traffic Modeling Under Tactical Environment (군 전술환경에 적합한 WNW의 최적 구조와 트래픽 해석)

  • Jang, Jae-Young;Kim, Jung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1114-1121
    • /
    • 2014
  • Armed forces conducts war under volatile and unpredictable situation. Constructing communication system which ensures a victory is very important and difficult work. Traffic modeling has been conducted to derive WNW topology which meets operational requirements and capability under tactical environment. The result of study explains based on DTaQ's IER that company level cluster has 10~20% better packet receive rate than brigade level size.

Design and Application of Magnetic Damper for Reducing Rotor Vibration (회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용)

  • Kim, Young-Bae;Yi, Hyeong-Bok;Lee, Bong-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

Considerations on the development of Multi-Train Traffic Simulator for KyongBu-Line (경부선 혼합 열차운용 시뮬레이션 개발에 관한 고찰)

  • 김동희;오석문
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.77-85
    • /
    • 2000
  • The railway system is composed of large scale infrastructures and high-cost trains. For planning and analyzing this kind of complex system, simulation method can be used for efficient tool. In this research, we review basic simulation programming models and present a modeling for the elements of railway system such as rail-line infrastructure, train, time table and operational route. Additionally, some considerations on the development of multi-train traffic simulator for KyongBu-line are discussed.

  • PDF

Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period (2020년 수도권 라디오존데 집중관측 자료의 한국형모델 기반 관측 영향 평가)

  • Hwang, Yoonjeong;Ha, Ji-Hyun;Kim, Changhwan;Choi, Dayoung;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.311-326
    • /
    • 2021
  • To improve the predictability of high-impact weather phenomena around Seoul, where a larger number of people are densely populated, KMA conducted the intensive observation from 22 June to 20 September in 2020 over the Seoul area. During the intensive observation period (IOP), the dropsonde from NIMS Atmospheric Research Aircraft (NARA) and the radiosonde from KMA research vessel Gisang1 were observed in the Yellow Sea, while, in the land, the radiosonde observation data were collected from Icheon and Incheon. Therefore, in this study, the effects of radiosonde and dropsonde data during the IOP were investigated by Observing System Experiment (OSE) based on Korean Integrated Model (KIM). We conducted two experiments: CTL assimilated the operational fifteen kinds of observations, and EXP assimilated not only operational observation data but also intensive observation data. Verifications over the Korean Peninsula area of two experiments were performed against analysis and observation data. The results showed that the predictability of short-range forecast (1~2 day) was improved for geopotential height at middle level and temperature at lower level. In three precipitation cases, EXP improved the distribution of precipitation against CTL. In typhoon cases, the predictability of EXP for typhoon track was better than CTL, although both experiments simulated weaker intensity as compared with the observed data.

Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development (이색 사출성형기 개발을 위한 유압시스템의 특성 검토)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.

Script-based Test System for Rapid Verification of Atomic Models in Discrete Event System Specification Simulation

  • Nam, Su-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.101-107
    • /
    • 2022
  • Modeling and simulation is a technique used for operational verification, performance analysis, operational optimization, and prediction of target systems. Discrete Event System Specification (DEVS) of this representative technology defines models with a strict formalism and stratifies the structures between the models. When the atomic DEVS models operate with an intention different the target system, the simulation may lead to erroneous decision-making. However, most DEVS systems have the exclusion of the model test or provision of the manual test, so developers spend a lot of time verifying the atomic models. In this paper, we propose a script-based automated test system for accurate and fast validation of atomic models in Python-based DEVS. The proposed system uses both the existing method of manual testing and the new method of the script-based testing. As Experimental results in our system, the script-based test method was executed within 24 millisecond when the script was executed 10 times consecutively. Thus, the proposed system guarantees a fast verification time of the atomic models in our script-based test and improves the reusability of the test script.

An Study on the Improved Modeling and Double Loop Controller Design for Three-Level Boost Converter (Three-Level Boost Converter의 개선된 모델링 및 더블 루프 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.442-450
    • /
    • 2020
  • A small-signal modeling approach for a three-level boost (TLB) converter and a design methodology for a double-loop controller are proposed in this study. Conventional modeling of TLB converters involves three state variables. Moreover, TLB converters have two operation modes depending on the duty ratio. Consequently, complex mathematical calculations are required for controller design. This study proposes a simple system modeling method that uses two state variables, unlike previous methods that require three state variables. Analysis shows that the transfer functions of the two operation modes can be expressed as identical equations. This condition means that the linear feedback controller can be applied to all operational ranges, that is, for full duty ratios. The design method for a double-loop controller using a PI controller is presented in step-by-step sequences. Simulation and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.