• Title/Summary/Keyword: Operation stability

Search Result 1,724, Processing Time 0.033 seconds

Operation Strategy of Cheju AC Network Included Multi-Infeed HVDC System

  • Kim, Chan-Ki;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.393-401
    • /
    • 2013
  • This paper deals with the operation strategy of the Cheju AC network included MIHVDC system (Multi-Infeed HVDC system). In case that where several HVDC systems are located in the vicinity of each other, there are interactions between the different HVDC systems in such network configurations. The interactions which could be generated in multi-infeed HVDC are voltage stability, power stability and inertia stability, to analyze such systems in a systematic way to ensure that there are no risks of adverse interactions is very important. The developed method until now to analyze MIHVDC interaction is extended from MAP(Maximum Available Power) method for analyzing the power stability of the single-infeed HVDC system, this method is to solve the eigenstructure using the identified factors influencing the interactions. Finally, the algorithms which are introduced in this paper, to determine the operation strategy are applied to Cheju island network which is supplied by two HVDCs.

THE STUDY ON VERTICAL STABILITY OF ANTERIOR OPEN BITE PATIENTS AFTER BSSRO (전치부 개교합 환자의 하악지시상분할골절단술 후 수직적 안정성에 관한 연구)

  • Kim, Jong-Won;Jeon, Ha-Ryong;Hong, Jong-Rak
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.422-426
    • /
    • 2005
  • Purpose : The purpose of this study was to investigate the vertical stability after BSSRO surgery in skeletal class III malocclusion patients with mild anterior open bite and to present a method to increase the stability. Materials and methods : 36 patients, 11 male and 25 female, who received BSSRO surgery with the diagnosis of skeletal class III with anterior open bite at the Department of Oral and Maxillofacial Surgery in Samsung Medical Center, from January 2002 to August 2003, were selected for this study. The patients were between 18 to 45 years of age. Preoperative and postoperative (immediate, 6 months, and 1 year after operation) lateral cephalograms were compared to evaluate the vertical stability by measuring the distance of nasion-menton, mandibular plane angle, and overbite. Results : The nasion-menton distance decreased by 1.65mm immediately after the operation in comparison to the preoperative value. This distance further decreased by 0.60 mm at 6 months and 1.06mm at 1 year after the operation. The mandibular plane angle increased after the operation and further increased at 6 months and 1 year. The amount of overbite increased by the operation was 2.34mm and an additional increase of 0.70mm at 6 months and 0.94mm at 1 year were shown. Conclusion : Clinically, none of the patients showed relapse of anterior open bite and the vertical stability is highly influenced by orthodontic treatment after the operation. In this study, BSSRO surgery is considered to be a rather reliable procedure that restores stability to skeletal class III malocclusion patients with slight anterior open bite.

A Simulated Study on the Stability during Crossing Operation of K21 Infantry Fighting Vehicle (K21 보병전투차량의 도하작전 간 안정성에 관한 시뮬레이션 연구)

  • Sung Do Kim;Byung Kil Lee;Jang Wook Hur
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.39-43
    • /
    • 2023
  • In ground weapon systems, the design and analysis technology for water operation stability is a relatively unknown area compared to maritime weapon systems. Through this study, it was confirmed that our weapon system satisfies the criteria for stability on the water when considering the operational concept and operational performance. However, there is a limitation of the study that it did not perform verification tests on the actual system. Therefore, in the future research and weapon system acquisition process, a procedure to prove the stability through freeboard analysis using the actual system is required.

MODIFIED HYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS WITH SQUARE-SYMMETRIC OPERATION

  • Kim, Gwang-Hui;Lee, Young-Whan;Ji, Kyoung-Shin
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.211-223
    • /
    • 2001
  • In this paper, we obtain the modified Hyers-Ulam-Rassias stability for the family of the functional equation f(x o y) = H(f(x)(sup)1/t, f(y)(sup)1/t)(x,y) $\in$S), where H is a s homogeneous function of degree t and o is a square-symmetric operation on the set S.

  • PDF

Study on Structure Design of High-Stiffness for 5 - Axis Machining Center (5축 공작기계의 고강성 구조설계에 관한 연구)

  • Hong, Jong-Pil;Gong, Byeong-Chae;Choi, Sung-Dae;Choi, Hyun-Jin;Lee, Dal-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • This study covers the optimum design of the 5-axis machine tool. In addition, the intelligent control secures structural stability through the optimum design of the structure of the 5-axis machine center, main spindle, and the tilting index table. The big requirement, like above, ultimately leads to speed-up operation. And this is inevitable to understand the vibration phenomenon and its related mechanical phenomenon in terms of productivity and its accuracy. In general, the productivity is correlated with the operation speed and it has become bigger by its vibration scale and the operation speed so far. Vibration phenomenon and its heat-transformation of the machine is naturally occurred during the operation. If these entire machinery phenomenons are interpreted through the constructive understanding and the interpretation of the naturally produced vibration and heat-transformation, it would be very useful to improve the rapidity and its stability of the machine operation indeed. In this dissertation, the problems of structure through heating, stability, dynamic aspect and safety about intelligent 5-wheel machine tool are discovered to examine. All these discoveries are applied to the structure in order to enhance the density of it. It aims to improve the stability.

The Development of Rail-Transport Operation Control using the Variation of Slope Stability under Rainfall (강우시 사면안전율 변화를 이용한 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.397-402
    • /
    • 2003
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment are defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

Stability Analysis of High-speed Driveshafts under the Variation of the Support Conditions (초고속 구동축의 지지 조건에 따른 안정성 분석)

  • Shin, Eung-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • This paper is to investigate the effects of the asymmetrical support stiffness on the stability of a supercritical driveshaft with asymmetrical shaft stiffness and anisotropic bearings. The equations of motion is derived for a system including a rigid disk, a massless flexible asymmetric shaft, anisotropic bearings and a support beam. The Floquet theory is applied to perform the stability analysis with the variation of the support stiffness, the shaft asymmetry, the shaft damping and the shaft speed. The results show that the asymmetric support stiffness is closely related to the stability caused by primary resonance as well as the supercritical operation. First, the stiffness variation can stabilize the system around primary resonance by weakening the parametric resonance from the shaft asymmetry. Second, it also improve the stability characteristics at a supercritical operation when the support stiffness is not so high relative to the shaft stiffness.

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.