• Title/Summary/Keyword: Operation Concept

Search Result 1,603, Processing Time 0.02 seconds

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

The Effect of Structured Information on the Sleep Amount of Patients Undergoing Open Heart Surgery (계획된 간호 정보가 수면량에 미치는 영향에 관한 연구 -개심술 환자를 중심으로-)

  • 이소우
    • Journal of Korean Academy of Nursing
    • /
    • v.12 no.2
    • /
    • pp.1-26
    • /
    • 1982
  • The main purpose of this study was to test the effect of the structured information on the sleep amount of the patients undergoing open heart surgery. This study has specifically addressed to the Following two basic research questions: (1) Would the structed in formation influence in the reduction of sleep disturbance related to anxiety and Physical stress before and after the operation? and (2) that would be the effects of the structured information on the level of preoperative state anxiety, the hormonal change, and the degree of behavioral change in the patients undergoing an open heart surgery? A Quasi-experimental research was designed to answer these questions with one experimental group and one control group. Subjects in both groups were matched as closely as possible to avoid the effect of the differences inherent to the group characteristics, Baseline data were also. collected on both groups for 7 days prior to the experiment and found that subjects in both groups had comparable sleep patterns, trait anxiety, hormonal levels and behavioral level. A structured information as an experimental input was given to the subjects in the experimental group only. Data were collected and compared between the experimental group and the control group on the sleep amount of the consecutive pre and post operative days, on preoperative state anxiety level, and on hormonal and behavioral changes. To test the effectiveness of the structured information, two main hypotheses and three sub-hypotheses were formulated as follows; Main hypothesis 1: Experimental group which received structured information will have more sleep amount than control group without structured information in the night before the open heart surgery. Main hypothesis 2: Experimental group with structured information will have more sleep, amount than control group without structured information during the week following the open heart surgery Sub-hypothesis 1: Experimental group with structured information will be lower in the level of State anxiety than control group without structured information in the night before the open heart surgery. Sub-hypothesis 2 : Experimental group with structured information will have lower hormonal level than control group without stuctured information on the 5th day after the open heart surgery Sub-hypothesis 3: Experimental group with structured information will be lower in the behavioral change level than control group without structured information during the week after the open heart surgery. The research was conducted in a national university hospital in Seoul, Korea. The 53 Subjects who participated in the study were systematically divided into experimental group and control group which was decided by random sampling method. Among 53 subjects, 26 were placed in the experimental group and 27 in the control group. Instruments; (1) Structed information: Structured information as an independent variable was constructed by the researcher on the basis of Roy's adaptation model consisting of physiologic needs, self-concept, role function and interdependence needs as related to the sleep and of operational procedures. (2) Sleep amount measure: Sleep amount as main dependent variable was measured by trained nurses through observation on the basis of the established criteria, such as closed or open eyes, regular or irregular respiration, body movement, posture, responses to the light and question, facial expressions and self report after sleep. (3) State anxiety measure: State Anxiety as a sub-dependent variable was measured by Spi-elberger's STAI Anxiety scale, (4) Hormornal change measure: Hormone as a sub-dependent variable was measured by the cortisol level in plasma. (5) Behavior change measure: Behavior as a sub-dependent variable was measured by the Behavior and Mood Rating Scale by Wyatt. The data were collected over a period of four months, from June to October 1981, after the pretest period of two months. For the analysis of the data and test for the hypotheses, the t-test with mean differences and analysis of covariance was used. The result of the test for instruments show as follows: (1) STAI measurement for trait and state anxiety as analyzed by Cronbachs alpha coefficient analysis for item analysis and reliability showed the reliability level at r= .90 r= .91 respectively. (2) Behavior and Mood Rating Scale measurement was analyzed by means of Principal Component Analysis technique. Seven factors retained were anger, anxiety, hyperactivity, depression, bizarre behavior, suspicious behavior and emotional withdrawal. Cumulative percentage of each factor was 71.3%. The result of the test for hypotheses show as follows; (1) Main hypothesis, was not supported. The experimental group has 282 minutes of sleep as compared to the 255 minutes of sleep by the control group. Thus the sleep amount was higher in experimental group than in control group, however, the difference was not statistically significant at .05 level. (2) Main hypothesis 2 was not supported. The mean sleep amount of the experimental group and control group were 297 minutes and 278 minutes respectively Therefore, the experimental group had more sleep amount as compared to the control group, however, the difference was not statistically significant at .05 level. Thus, the main hypothesis 2 was not supported. (3) Sub-hypothesis 1 was not supported. The mean state anxiety of the experimental group and control group were 42.3, 43.9 in scores. Thus, the experimental group had slightly lower state anxiety level than control group, howe-ver, the difference was not statistically significant at .05 level. (4) Sub-hypothesis 2 was not supported. . The mean hormonal level of the experimental group and control group were 338 ㎍ and 440 ㎍ respectively. Thus, the experimental group showed decreased hormonal level than the control group, however, the difference was not statistically significant at .05 level. (5) Sub-hypothesis 3 was supported. The mean behavioral level of the experimental group and control group were 29.60 and 32.00 respectively in score. Thus, the experimental group showed lower behavioral change level than the control group. The difference was statistically significant at .05 level. In summary, the structured information did not influence the sleep amount, state anxiety or hormonal level of the subjects undergoing an open heart surgery at a statistically significant level, however, it showed a definite trends in their relationships, not least to mention its significant effect shown on behavioral change level. It can further be speculated that a great degree of individual differences in the variables such as sleep amount, state anxiety and fluctuation in hormonal level may partly be responsible for the statistical insensitivity to the experimentation.

  • PDF

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.