• 제목/요약/키워드: Operating temperature range

검색결과 552건 처리시간 0.068초

미끄럼 유동을 고려한 초소형 공기 베어링의 정특성 (Static Characteristics of Micro Gas-Lubricated proceeding Bearings with a Slip Flow)

  • 곽현덕;이용복;김창호;이남수;최동훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.137-142
    • /
    • 2002
  • The fluid mechanics and operating conditions of gas-lubricated proceeding bearings in micro rotating machinery such as micro polarization modulator and micro gas turbine are different from their larger size ones. Due to non-continuum effects, there is a slip of gas at the walls. Thus in this paper, the slip flow effect is considered to estimate the pressure distribution and load-carrying capacity of micro gas-lubricated proceeding bearings as the local Knudsen number at the minimum film thickness is greater than 0.01. Based on the compressible Reynolds equation with slip flow, the static characteristics of micro gas-lubricated proceeding bearings are obtained. Numerical predictions compare the pressure distribution and load capacity considering slip flow with the performance of micro proceeding bearings without slip f]ow for a range of bearing numbers and eccentricities. The results clearly show that the slip flow effect on the static characteristics is considerable and becomes more significant as temperature increases.

  • PDF

싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기 (Online Load Torque Ripple Compensator for Single Rolling Piston Compressor)

  • 구본관
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

타이어 공기압 모니터링 시스템의 판단 로직 설계에 관한 연구 (A Study on the Design of decision logic for n Tire Pressure Monitoring System)

  • 김병우
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.285-290
    • /
    • 2006
  • 자동차에 있어서 안전은 가장 중요한 설계 인자이다. 자동차 타이어 압력은 자동차 안전에 중요한 요소로 알려져 있다. 능동적 안전 측면에서, 타이어공기압검지장치(TPMS)는 아주 중요한 요소라 할 수 있다. RF 통신 기능을 갖고 타이어 내부에서 타이어 압력을 모니터링하는 장치는 광범위한 운전영역에서 정회한 압력을 검지하는 효과적 방법이다. 본 논문에서는 타이어 압력 및 온도보상 특성 관계를 조사하였다. 본 연구를 통하여, 차량 조건과 주행 변수를 고려한 TPMS 제어 로직의 가이드 라인을 설정할 수 있었다.

  • PDF

Thermo-mechanical Design for On-orbit Verification of MEMS based Solid Propellant Thruster Array through STEP Cube Lab Mission

  • Oh, Hyun-Ung;Ha, Heon-Woo;Kim, Taegyu;Lee, Jong-Kwang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.526-534
    • /
    • 2016
  • A MEMS solid propellant thruster array shall be operated within an allowable range of operating temperatures to avoid ignition failure by incomplete combustion due to a time delay in ignition. The structural safety of the MEMS thruster array under severe on-orbit thermal conditions can also be guaranteed by a suitable thermal control. In this study, we propose a thermal control strategy to perform on-orbit verification of a MEMS thruster module, which is expected to be the primary payload of the STEP Cube Lab mission. The strategy involves, the use of micro-igniters as heaters and temperature sensors for active thermal control because an additional heater cannot be implemented in the current design. In addition, we made efforts to reduce the launch loads transmitted to the MEMS thruster module at the system level structural design. The effectiveness of the proposed thermo-mechanical design strategy has been demonstrated by numerical analysis.

철도교통 트랜스폰더 태그의 선로변 설치를 위한 내환경성 연구 (Study on Environmental Resistance of Railway Transponder Tag for Wayside Installation)

  • 김혜윤;박성수;양영구;이승원;염기중;이재호
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.948-953
    • /
    • 2015
  • In this paper, we studied the environmental requirements for the railway transponder system. The transponder system is comprised of a reader installed beneath the train, a tag installed on the track, and a portable programmer. Among them, the transponder tag should be designed to withstand harsh environments, such as wide operating temperature range, mechanical shock and vibration, etc. To validate stable and reliable service under railway conditions, we carried out environmental test for transponder tag. We then installed the tags on the Honam high-speed test line.

유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조 (Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed)

  • 이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

Electrorhelological Properties of Monodispersed Submicron-sized Hollow Polyaniline Adipate Suspension

  • 성보현;최웅수
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.28-32
    • /
    • 2005
  • The electrorheoloRical (ER) fluids are composed of a colloidal dispersion of polarizable particles in insulating oil, and it's the rheological property changes by the applied electric field. These changed are reversible and occur fast within a fewmilliseconds. The ER properties of the ER fluid such as increment of viscosity and yield stress come from the particle chain structure induced by electric fleld. When formulating the ER fluid for a speciflc application, some requirement must besatisfled, which are high yield stress under electric field, rapid response, and dispersion stability. While this characteristic makes valuable ER fluids in valious industrial applications, their lung term and quiescent application has been limited because ofproblems with particle sedimentation. In an effort to overcome sedimentation problem of ER fluids, the anhydrous ER materials of monodispersed hollow polyaniline (PANI) and adipate derivative respectively with submicron-sized suspension providing wide operating temperature range and other advantage were synthesized in a four-step procedure. The ER fluidswere characterized by FT-lR, TGA, DLS, SEM, and TEM. Stability of the suspensions was examined by an UV spectroscopy.The rheological and electrical properties of the suspension were investigated Couette-type rheometer with a high voltagegenerator, current density, and conductivity. And the behavior of ER suspensions was observed by a video camera attached toan optical microscope under 3kV/mm. The suspensions showed good ER properties, durability, and particle dispersion.

소형 직교류 열교환기의 열적 특성에 관한 연구 (Thermal Characteristics of Cross-flow Small Scale Heat Exchanger)

  • 금성민;유병훈;이관석;이승로
    • 에너지공학
    • /
    • 제22권1호
    • /
    • pp.44-50
    • /
    • 2013
  • 본 연구의 목적은 예혼합방식의 버너 앞에 소형 열교환기를 설치한 후 당량비를 변화시킬 때 NOx와 CO의 배출특성을 검토하고 열교환기 유용도와 엔트로피 생성수를 실험결과를 바탕으로 계산한 것이다. 실험결과 당량비가 증가할수록 화염온도가 높아지면서 열전달율은 상승한다. 배기가스 오염물질량과 유용도를 고려할 경우 본 실험범위에서의 적정 운전당량비는 0.75이다. 유용도를 증가시키고 엔트로피 생성량을 줄이기 위해서는 연소가스의 열전달량을 증가시켜야 하며 따라서 열교환기 면적을 증가시키는 것이 필요하다고 판단된다.

매연여과장치 재생을 위한 플라즈마 응용 버너 개발 (Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter)

  • 차민석;이대훈;김관태;이재옥;송영훈;김석준
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.8-13
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can burn 20-60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter diesel engine can be raised up to around $600^{\circ}C$ for a wide range of engine speed (idle-3,000 rpm). The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사 (Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling)

  • 권오석;임옥택
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.