• Title/Summary/Keyword: Operating speed increase of railroad

Search Result 13, Processing Time 0.029 seconds

Development of Intelligent Planning and Analysis Method for Railroad Alignment Improvement (지능형 철도 선형개량 계획 및 분석 기술 개발)

  • Kim, Jeong Hyun;Lee, Jun;Oh, Jitaek;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.651-657
    • /
    • 2023
  • Railroad alignment improvements and operating speed increase occupy considerable portion in recent railroad market. Developing countries have limitations to construction of new high speed railroads due to the burden of budgets and the lack of demands, and the projects of operating speed increase arepracticallyrecommended. Thisstudy developed the methodologyto provide the railroad alignment design alternatives and the costs by upgrading the "Intelligent Railroad Alignment Design Program (ei-Rail)" which has been used to obtain the alignment plans and construction costs for railroad construction projects. The program provides the cost for alignment improvement, design drafts and the effects of operating speed increase with the input of target improvement speed and the prevailing railroad alignment on the numerical map. It is then expected for the ei-Rail program to be used for the supporting tool for the railroad alignment improvement projects.

Transition Zone Behavioral Characteristics with Increase the Speed of High Speed railroad (고속철도 열차 증속에 따른 접속부 거동특성 분석)

  • Park, Hyo-Sung;Kim, Nak-Seok;Kang, Yun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1583-1593
    • /
    • 2011
  • As we see the continuation of the increase in the speed of the High Speed railroad worldwide, there is a concern for a possible problem in the connecting transition zone in the railway infrastructure. Honam High Speed railroad's transition zone in the hub for the rotation structures and other supporting structures such as approach slab, sub slab, approach block, etc. Due to its increase in speed of the design speed, and its important role on the driving stability and credibility of the bearing ground performance, we must seek and fine a prevention plan for a cause of differential settlement, as well as the cause of the derailment. In this dissertation, domestic, as well as international design manuals and the applicability of the control standards are studied. Also through the study target, Honam High Speed railroad zone 4-1, we evaluated the connecting componant of the Yeon-Jeong bridge through the eigenvalue and weight transfer of the train when operated at 300km/h, 350km/h, 400km/h, 450km/h, and were able to achieve detailed assessment by checking track behaviors, looking at various components such as the rotation acceleration according to the inversion of the distance length, displace length, displacement and stress distribution. Through these studied, possibility of operating at 400km/h was evaluated based on the condition of the current design basis.

  • PDF

Analysis on the Vibration Characteristics of Reduction Gear Units for High-speed Trains (고속철도차량 감속구동장치 진동특성 분석)

  • Moon, Kyung Ho;Lee, Dong-Hyong;Kim, Jae Chul;Ji, Hae Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.694-701
    • /
    • 2013
  • The gear-reduction units of Korean high-speed trains consist of a motor reduction unit, an axle gear box reduction unit, and a tripod joint shaft. A reduction gear unit is a gearbox used to reduce the rotational speed of the input shaft to a slower rotational speed on the output shaft. This reduction in output speed helps to increase torque. Defective reduction gear units in high-speed trains are caused by damage to the gear or by gear fatigue. To diagnose potential problems, it is important to know the vibration characteristics of the reduction gear units. In this study, we analyzed the vibration characteristics of reduction gears under various conditions. The test setup included a full-scale test rig to evaluate reduction gear under both normal and extreme operating conditions.

A Study on TTX SIV Characteristic Using Measurement System (계측장치를 이용한 틸팅열차 보조전원장치 특성 연구)

  • Han, Yeong-Jae;Lee, Su-Gil;Park, Chun-Su;Han, Seong-Ho;Jeong, Gwon-Il;Lee, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.178-180
    • /
    • 2008
  • With the increase in population, the area of human activities has expanded, resulting in the dramatic increase in the need for transportation system. Tilting trains are currently in operation in 13 countries around the world. TTX(Tilting Train express) has been developed by KRRI(Korea Railroad Research Institute) for last 6 years to satisfy the need. This train developed in this Project is designed for a design speed of 200km/h and a maximum operating speed of 180km/h. We developed a measurement system for on-line test. the measurement console desk is mounted on T car, which is designed as the DAQ system train. It is comprehensive of the industrial computers, LCD monitors, communication cards and the communication channel measurement system. Using this system, SIV performance evaluation was conducted.

  • PDF

A Study on Critical Speed Enhancement of High-speed Train Passenger Car (고속열차 객차의 임계속도 향상에 관한 연구)

  • Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.603-610
    • /
    • 2016
  • Over 12 years have passed since the first commercial operation of a Korean high-speed train. Since then, the transport capacity of the high-speed lines has become almost saturated. Therefore, studies have been carried out to increase the operating speed of the trains in order to increase their transportation capacity. This study was carried out to improve the critical speed of the KTX-Sancheon, Korean high-speed train, in order to increase its operating speed. A dynamic analysis of the KTX-Sancheon train was performed using the contact data obtained from the wheel wear profiles that were measured from a KTX-Sancheon train in commercial operation. The analysis results were verified by comparing them with the measurement acceleration data obtained from KTX-Sancheon. The suspension parameters were optimized to improve the operation speed. The critical speed of KTX-Sancheon was increased by 9.4% after the optimization by the response surface method. The optimized suspension parameters are expected to be used for the new bogie design to increase the operating speed of KTX-Sancheon from 300km/h to 350km/h.

Fracture Mechanics Characteristics of Wheel and Axle For High Speed Train (고속철도용 차륜과 차축의 파괴역학적 특성)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.28-34
    • /
    • 2010
  • Railway wheel and axle is the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluate of wheelset strength and safety has been desired. Fracture mechanics characteristics such as dynamic fracture toughness, fatigue threshold and charpy impact energy with respect to the tread, plate, disc hole of wheel and the surface of press fitted axle are evaluated. This paper describes the difference of fracture toughness, fatigue crack growth and fatigue threshold at the locations of wheel and axle. The results show that the dynamic fracture toughness, $K_{ID}$, is obviously lower than static fracture toughness, $K_{IC}$ and the fracture mechanics characteristics are difference to the location of wheel tread and hole.

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

The optimization of suspension system for high performance of Korean Tilling Train (한국형 틸팅 열차의 성능 향상을 위한 현가장치 최적화)

  • Lee, Su-In;Park, Tae-Won;Yoon, Ji-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1224-1228
    • /
    • 2009
  • The korean tilting train can increase the whole operating speed at a curved railroad, reducing the lateral acceleration with the tilting mechanism unlike the train developed before. However, increasing operating speed on the curved section, may cause safety problem of train travel. In general, a suspension system has important effects on driving safety. Therefore, optimization of suspension system is necessary to secure the safety of the tilting train. In this study, the tilting train suspension system has been optimized using Design of Experiments (DOE). First, the design parameter is selected using sensitivity analysis. A lateral acceleration which affects on the driving safety is chosen as the objective function. And the Design of Experiments (DOE) is used for optimization. As a result, new design parameters which show better performance than the existing suspension system has been suggested.

  • PDF

Technical Investigation of Rail(60kg) Head Profile (60kg급 레일 두부형상 개선 기술검토)

  • 정우진;양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.220-227
    • /
    • 2002
  • Now, Korea National Railroad is planning many ways to increase the maximum operating speed of train up to 200km/h by 2010. Among those ways, connecting conventional line with the KTX is the strongest alternative. Mostly, conventional lines are consisting of both KS50N and KS6O rail. However, the excessive abrasion might be occurred between wheel and rail when the KTX designed to operate on UIC60 is operating on the conventional line. On this study, new standard of 60kg-class rail considered suitability for both KTX and wheel used in conventional line is presented. It seems to be an effective solution for increasing maintenance costs expected when commercial speed of conventional line is increasing.

  • PDF

Development of Planning Method for Double-Tracking of Single Track Railroad based on the Intelligent Rail Alignment Planning Program (ei-Rail) (지능형철도선형계획 프로그램(ei-Rail) 기반의 단선철도 복선화 계획 기술개발)

  • Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.837-842
    • /
    • 2022
  • The "Intelligent Railroad Alignment Design Program (ei-Rail) developed in 2013 has been adopted in the planning and the evaluation/validation of design results of oversea railroad construction projects. Target countries of Korean railroad industries requires the operating speed increase with alignment improvement and the double tracking of prevailing single track railroads as well as new railroad construction. This study is to develop an additional module for double tracking project of prevailing single track railroads in the ei-Rail. The developed method is based on the geometrics of prevailing railroad, and the definition of planned project determines the project cost based on the unit cost by work type, and provides the draft design of double track. The module was validated with a oversea case. It is then expected for oversea railroad double tracking project more efficiently in planning and the evaluation of design results.