• Title/Summary/Keyword: Operating mode

Search Result 1,466, Processing Time 0.037 seconds

Bioequivalence of Atorva Tablet® to Lipitor Tablet® (Atorvastatin 20 mg) (리피토정® (아토르바스타틴 20 mg)에 대한 아토르바정®의 생물학적동등성)

  • Lim, Hyun-Kyun;Lee, Tae-Ho;Lee, Jae-Hyun;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • The present study describes the evaluation of the bioequivalence of two atorvastatin tablets, Lipitor $Tablet^{(R)}$ (Pfizer, reference drug) and Atorva $Tablet^{(R)}$ (Yuhan, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Forty-nine healthy male Korean volunteers received each medicine at the atorvastatin dose of 40 mg in a $2{\times}2$ crossover study with a two weeks washout interval. After drug administration, serial blood samples were collected at a specific time interval from 0-48 hours. The plasma atorvastatin concentrations were monitored by an high performance liquid chromatography -tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.5 min and calibration curves were linear over the concentration range of 0.1-100 ng/mL for atorvastatin. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 48hr) was calculated by the linear log trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were complied trom the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Atorva $Tablet^{(R)}$ / Lipitor $Tablet^{(R)}$ were ${\log}\;0.9413{\sim}{\log}\;1.0179$ and ${\log}\;0.831{\sim}{\log}\;1.0569$, respectively. These values were within the acceptable bioequivalence intervals of ${\log}\;0.8{\sim}{\log}\;1.25$. Based on these statistical considerations, it was concluded that the test drug, Atorva $Tablet^{(R)}$ was bioequivalent to the reference drug, Lipitor $Tablet^{(R)}$.

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

Structure Optimization and 3D Printing Manufacture Technology of Pull Cord Switch Components Applied to Power Plant Coal Yard (발전소 저탄장에 적용되는 풀코드스위치 부품의 구조최적화 3D 프린팅 제작기술 개발)

  • Lee, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.319-330
    • /
    • 2016
  • Recently, 3D printing technology has been applied to make a concept model and working mockup of an industrial application. On the other hand, this technology has limited applications in industrial products due to the materials and reliability of the 3D printed product. In this study, the components of a full cord switch module are proposed as a case of a 3D printed component that can be used as a substitute for a short period. These are hub-driven and lever lockup components that have the structural characteristics of breaking down frequently in the emergency operating status. To ensure the structural strength for a substitute period, research of structure optimization was performed because 3D printing technology has a limitation in the materials used. After optimizing the structure variables of the hub-driven component, reasonable results can be drawn in that the safety factors of the left and right switching mode are 1.243 (${\Delta}153.67%$) and 3.156 (${\Delta}404.96%$). The lever lockup component has a structural weak point that can break down easily on the lockup-part because of a cantilever shape and bending moment. The rib structure was applied to decrease the deflection. In addition, optimization of the structural variables was performed, showing a safety factor of 7.52(${\Delta}26%$).

Financial performance analysis based on efficiency evaluation of Regional Public Hospital (지방의료원의 운영효율성 평가에 따른 재무성과 분석)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.614-623
    • /
    • 2017
  • The purpose of this study is to analyze the impact of the financial performance of regional public hospitals on their efficiency. In addition, the analysis of their efficiency using environmental factors, such as the market share, operating mode, and size of the regional public hospitals, as well as the factors influencing their efficiency, are selected by selecting the input and output factors of the hospitals and some differences were found between them. The DEA index and financial performance of the 31 regional public hospitals were calculated for the three years from 2012 to 2014. ANOVA and hierarchical regression analysis were used. As a result, there was a significant difference in their efficiency according to the environmental factors, such as the city scale of the regional public hospital, the number of hospital beds, and their business performance, productivity, and publicness. The medical profit margin (p<0.05), labor cost investment efficiency (p<0.05) and HHI (p<0.05) were found to affect the efficiency. In order to identify the inefficiencies of the regional public hospitals and increase their efficiency, it is necessary to measure the efficiency of the input resources and to reduce their cost. In addition, if the regional public hospitals were to provide specialized services, such as specialized functions of medical care that would give them a competitive advantage over private hospitals, their operational efficiency would be enhanced and they would be able to fulfill their role as public medical institutions.

Comparison of push-out bond strength of post according to cement application methods (시멘트 도포 방법에 따른 포스트의 push-out 접착 강도 비교)

  • Kim, Seo-Ryeong;Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.479-485
    • /
    • 2010
  • Objectives: The aim of this study was to compare the push-out bond strengths of resin cement/fiber post systems to post space dentin using different application methods of resin cement. Materials and Methods: Thirty extracted human premolars were selected and randomly divided into 3 groups according to the technique used to place the cement into root canal: using lentulo-spiral instrument (group Lentulo), applying the cement onto the post surface (group Direct), and injecting the material using a specific elongation tip (group Elongation tip). After shaping and filling of the root canal, post space was drilled using Rely-X post drill. Rely-X fiber post was seated using Rely-X Unicem and resin cement was light polymerized. The root specimens were embedded in an acrylic resin and the specimens were sectioned perpendicularly to the long axis using a low-speed saw. Three slices per each root containing cross-sections of coronal, middle and apical part of the bonded fiber posts were obtained by sectioning. The push-out bond strength was measured using Universal Testing Machine. Specimens after bond failure were examined using operating microscope to evaluate the failure modes. Results: Push-out bond strengths were statistically influenced by the root regions. Group using the elongation tip showed significantly higher bond strength than other ways. Most failures occurred at the cement/dentin interface or in a mixed mode. Conclusions: The use of an elongation tip seems to reduce the number of imperfections within the selfadhesive cement interface compared to the techniques such as direct applying with the post and lentulospiral technique.

Effects of the Open Level of the Side Window on the Control of the Temperature and Relative Humidity in the Fog Cooling Greenhouse (포그냉방 온실에서 측창개폐수준이 온습도 제어에 미치는 영향)

  • Kim, Young-Bok;Sung, Hyun-Soo;Yun, Nam-Kyu;Lee, Si-Young;Hwang, Seung-Jae;Kim, Hyeon-Tae;Lee, Jang-Pyung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.265-278
    • /
    • 2011
  • Effects of the open level of the side window were studied to control the temperature and relative humidity in the fog cooling greenhouse. The greenhouse was cooled by air atomizing spray nozzles of the air and water two-fluid process. The control process includes the measuring of environmental variables, setting and coding of the water balance equations and heat balance in greenhouse, calculating of the roof window open and spray water, and operating of the motor and pump. The target temperature and relative humidity were set at $28^{\circ}C$, 75%, respectively. The three modes of the side window open level were 0%, 50% and 100%. The average dry bulb temperatures of the inside air were 28.2, 27.2 and $26.3^{\circ}C$, respectively and their standard deviation was ranged from $0.4^{\circ}C$to $0.8^{\circ}C$. Also the relative humidity of the 0% mode was the best controlled one with the average of 76.3% and the standard deviation of 2.1%.

Development of Defect Inspection System for Polygonal Containers (다각형 용기의 결함 검사 시스템 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • In this paper, we propose the development of a defect inspection system for polygonal containers. Embedded board consists of main part, communication part, input/output part, etc. The main unit is a main arithmetic unit, and the operating system that drives the embedded board is ported to control input/output for external communication, sensors and control. The input/output unit converts the electrical signals of the sensors installed in the field into digital and transmits them to the main module and plays the role of controlling the external stepper motor. The communication unit performs a role of setting an image capturing camera trigger and driving setting of the control device. The input/output unit converts the electrical signals of the control switches and sensors into digital and transmits them to the main module. In the input circuit for receiving the pulse input related to the operation mode, etc., a photocoupler is designed for each input port in order to minimize the interference of external noise. In order to objectively evaluate the accuracy of the development of the proposed polygonal container defect inspection system, comparison with other machine vision inspection systems is required, but it is impossible because there is currently no machine vision inspection system for polygonal containers. Therefore, by measuring the operation timing with an oscilloscope, it was confirmed that waveforms such as Test Time, One Angle Pulse Value, One Pulse Time, Camera Trigger Pulse, and BLU brightness control were accurately output.

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.