• Title/Summary/Keyword: Operating altitude

Search Result 143, Processing Time 0.019 seconds

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Example of Legislation on the Space Relations of Every Countries in the World and Main Contents of the Space Exploration Promotion Act and Future Task in Korea (세계 각국의 우주관계 입법례와 우리나라 우주 개발진흥법의 주요내용 및 앞으로의 과제)

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.20 no.1
    • /
    • pp.9-43
    • /
    • 2005
  • The Korean government established her first "National Space Program" in 1996, and revised it in 2000 and 2005. As embedded in the National Space Program, Korea aims to become one of the world's top countries in space technology by 2010. All of 13 satellites are planned to be put into orbit as schematized, which include 7 multi-purpose satellites, 4 science satellites and 2 geostationary orbit satellites. The Space Center in Korea is to be built at Woinara-Do, Bongrae-Myon, Koheung-Goon, Junlanam Province on the southern coast of the Korean peninsular. The first phase of the construction of the space center will be finished by 2007 for launch of KSLV-l. This will make Korea be the 13th advanced country in space development having a launching site in the world. The "Space Center" will serve as the infrastructure for the development of space technology and related technology, and plan to launch a low earth orbit satellite in 2007. A second science satellite made in Korea will be launched from the space center by 2007. From 2010, the center will be operated on a commercial basis operating launch facilities for low-to mid-altitude orbit satellites. Since the 'Aircraft Industry Promotion Act' was replaced by the 'Aerospace Industry Development Promotion Acf of 1987, this Act had been amended seven times from 1991 year to 2004. Most of developed countries has been enacted the space law including the public or private items such as an (1)DSA, (2)Russia, (3)the United Kingdom, (4)Germany, (5)France, (6)Canada, (7)Japan, (8)Sweden, (9)Australia, (10)Brazil, (11)Norway, (12)South Africa, (13)Argentina, (14)Chile, (15)Ukrainian etc. As the new Space Exploration Promotion Act was passed by the resolution of the Korean Congress on May 3, 2005, so the Korean government has made the public proclamation the abovementioned Act on May 31, this year. This Act takes effect on December 1, 2005 after elapsing six months from the date of promulgation. The main contents of Space Exploration Promotion Act of 2005 is as the following (1)establishing a basic plan for promoting space exploration, (2)establishment and function of national space committee, (3)procedure and management of domestic and international registration of space objects, (4)licensing of launch by space launch vehicles, (5)lability for damages caused by space accidents and liability insurance, (6) organizing and composition of the space accident investigation committee, (7)Support of non-governmental space exploration project, (8)Requesting Support and Cooperation of Space Exploration, (9)Rescue of Astronauts and Restitution of Space Objects, etc.. In oder to carry out successfully the medium and long basic plan for promoting space exploration and to develope space industry in Korea, I think that it is necessary for us to enlarge and to reorganize the function and manpower of the Space Technology Development Division of the Ministry of Science & Technology and the Korea Aerospace Research Institute. Korea has been carrying out its space program step by step according to the National Space Program. Korea also will continually strengthen the exchange and cooperation with all the countries in the world under the principle of equality, friendship relations and mutual benefits. Together with all other peoples around the globe, Korea will make due contribution towards the peaceful utilization of space resources and promotion of human progress and prosperity.

  • PDF

Analysis and Implication on the International Regulations related to Unmanned Aircraft -with emphasis on ICAO, U.S.A., Germany, Australia- (세계 무인항공기 운용 관련 규제 분석과 시사점 - ICAO, 미국, 독일, 호주를 중심으로 -)

  • Kim, Dong-Uk;Kim, Ji-Hoon;Kim, Sung-Mi;Kwon, Ky-Beom
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.225-285
    • /
    • 2017
  • In regard to the regulations related to the RPA(Remotely Piloted Aircraft), which is sometimes called in other countries as UA(Unmanned Aircraft), ICAO stipulates the regulations in the 'RPAS manual (2015)' in detail based on the 'Chicago Convention' in 1944, and enacts provisions for the Rules of UAS or RPAS. Other contries stipulates them such as the Federal Airline Rules (14 CFR), Public Law (112-95) in the United States, the Air Transport Act, Air Transport Order, Air Transport Authorization Order (through revision in "Regulations to operating Rules on unmanned aerial System") based on EASA Regulation (EC) No.216/2008 in the case of unmanned aircaft under 150kg in Germany, and Civil Aviation Act (CAA 1998), Civil Aviation Act 101 (CASR Part 101) in Australia. Commonly, these laws exclude the model aircraft for leisure purpose and require pilots on the ground, not onboard aricraft, capable of controlling RPA. The laws also require that all managements necessary to operate RPA and pilots safely and efficiently under the structure of the unmanned aircraft system within the scope of the regulations. Each country classifies the RPA as an aircraft less than 25kg. Australia and Germany further break down the RPA at a lower weight. ICAO stipulates all general aviation operations, including commercial operation, in accordance with Annex 6 of the Chicago Convention, and it also applies to RPAs operations. However, passenger transportation using RPAs is excluded. If the operational scope of the RPAs includes the airspace of another country, the special permission of the relevant country shall be required 7 days before the flight date with detail flight plan submitted. In accordance with Federal Aviation Regulation 107 in the United States, a small non-leisure RPA may be operated within line-of-sight of a responsible navigator or observer during the day in the speed range up to 161 km/hr (87 knots) and to the height up to 122 m (400 ft) from surface or water. RPA must yield flight path to other aircraft, and is prohibited to load dangerous materials or to operate more than two RPAs at the same time. In Germany, the regulations on UAS except for leisure and sports provide duty to avoidance of airborne collisions and other provisions related to ground safety and individual privacy. Although commercial UAS of 5 kg or less can be freely operated without approval by relaxing the existing regulatory requirements, all the UAS regardless of the weight must be operated below an altitude of 100 meters with continuous monitoring and pilot control. Australia was the first country to regulate unmanned aircraft in 2001, and its regulations have impacts on the unmanned aircraft laws of ICAO, FAA, and EASA. In order to improve the utiliity of unmanned aircraft which is considered to be low risk, the regulation conditions were relaxed through the revision in 2016 by adding the concept "Excluded RPA". In the case of excluded RPA, it can be operated without special permission even for commercial purpose. Furthermore, disscussions on a new standard manual is being conducted for further flexibility of the current regulations.

  • PDF