• Title/Summary/Keyword: Operating Uncertainty

Search Result 193, Processing Time 0.022 seconds

Design of Adaptive Observer for Power System with Structured Uncertainty (구조화된 불확실성을 갖는 전력 계통의 적응 관측기 설계)

  • Hwang, Jung-Rok;Kim, Do-Woo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1211-1214
    • /
    • 1999
  • Power system operating conditions vary with system configuration and loading conditions. Coefficients in nominal system model change in a complex manner with different operating point and so does system dynamic behavior. With the aid of unstructured and structured uncertainty descriptions the worst system variations can be estimated and formulated into two different uncertainty models multiplicative unstructured uncertainty in the form of transfer function and structured uncertainty with the parametric uncertainty description. in frequency domain

  • PDF

COVID-19 Pandemic and Cost Stickiness:Focusing on Operating Uncertainty (COVID-19 위기와 원가 하방경직성: 영업 불확실성을 중심으로)

  • Kim, Ji Hye
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Corona-virus(COVID-19), which has affected the world economy and Korea economy widely since 2020 could have an effect on management future perspectives. Thus this paper investigate whether the effect of COVID-19 pandemic on cost stickiness is contingent on operating uncertainty. By using the sample listed in KOSPI and KOSDAQ from 2018 to 2020. I find that COVID-19 increase cost stickiness when sales growth volatility is low. This paper contribute to the literature by providing the empirical evidence which contains that the effect of COVID-19 on cost stickiness varies with operating uncertainty.

Operating Criteria of Core Exit Temperature in Nuclear Power Plant with using Channel Statistical Allowance (총채널 불확실도를 적용한 원전 노심출구온도의 운전가능 판정기준)

  • Sung, Je Joong;Joo, Yoon Duk;Ha, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.166-171
    • /
    • 2014
  • Nuclear power plants are equipped with the reactor trip system (RTS) and the engineered safety features actuation system (ESFAS) to improve safety on the normal operation. In the event of the design basis accident (DBA), a various of post accident monitor(PAM)systems support to provide important details (e.g. Containment pressure, temperature and pressure of reactor cooling system and core exit temperature) to determine action of main control room (MCR). Operator should be immediately activated for the accident mitigation with the information. Especially, core exit temperature is a critical parameter because the operating mode converts from normal mode to emergency mode when the temperature of core exit reaches $649^{\circ}C$. In this study, uncertainty which was caused by exterior environment, characteristic of thermocouple/connector and accuracy of calibrator/indicator was evaluated in accordance with ANSI-ISA 67.04. The square root of the sum of square (SRSS) methodology for combining uncertainty terms that are random and independent was used in the synthesis. Every uncertainty that may exist in the hardware which is used to measure the core exit temperature was conservatively applied and the associative relation between the elements of uncertainty was considered simultaneously. As a result of uncertainty evaluation, the channel statistical allowance (CSA) of single channel of core exit temperature was +1.042%Span. The range of uncertainty, -0.35%Span ($-4.05^{\circ}C$) ~ +2.08%Span($24.25^{\circ}C$), was obtained as the operating criteria of core exit temperature.

Uncertainty Estimation Model for Heat Rate of Turbine Cycle (터빈 사이클 열소비율 정확도 추정 모델)

  • Choi, Ki-Sang;Kim, Seong-Kun;Choi, Kwang-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1721-1726
    • /
    • 2004
  • Heat rate is a representative index to estimate the performance of turbine cycle in nuclear power plant. Accuracy of heat rate calculation is dependent on the accuracy of measurement for plant status variables. Uncertainty of heat rate can be modeled using uncertainty propagation model. We developed practical estimation model of heat rate uncertainty using the propagation and regression model. The uncertainty model is used in the performance analysis system developed for the operating nuclear power plant.

  • PDF

Effect of Structured Information on Immediate Preoperative Anxiety and Uncertainty for Women Undergoing Laparoscopic Hysterectomy (수술 전 구조화된 정보제공이 복강경하 자궁절제술 여성의 수술대기 중 불안과 불확실성에 미치는 효과)

  • Cho, Youn Hee;Chun, Nami
    • Women's Health Nursing
    • /
    • v.21 no.4
    • /
    • pp.321-331
    • /
    • 2015
  • Purpose: Purpose of this study was to identify the effect of structured information on immediate preoperative anxiety and uncertainty for women undergoing total laparoscopic hysterectomy. Methods: Sixty women who were admitted for total laparoscopic hysterectomy were recruited at a university hospital in Gyeonggi-do from June to October 2014. Thirty women were assigned to either the experimental or the control group. Women in the experimental group were provided structured information, which consisted of visual and auditory materials about surgical preparation and process, practical experience on devices such as IV-PCA pump and Inspiro-meter and actual experience on route to go to the operating room. State-anxiety, uncertainty, and blood pressure and pulse rate as biological indicators were measured before and after the intervention to examine the effect. Results: Significant group differences were found on state anxiety, uncertainty, including ambiguity, inconsistency, and unpredictability at the holding area. There was a significant difference on pulse rate in the operating room between the two groups. Conclusion: Findings demonstrated that the structured information provided for women undergoing laparoscopic hysterectomy preoperatively was effective on immediate preoperative anxiety and uncertainty. Nurses may contribute to decreasing patients' anxiety and uncertainty by utilizing this structured information preoperatively.

Robust Torque Control for an Internal Combustion Engine with Nonlinear Uncertainty (비선형 불확실성을 갖는 내연기관의 강인한 토크제어)

  • Kim, Y.B.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.43-50
    • /
    • 2009
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved satisfying the demanded objectives. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameter in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, the present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

  • PDF

Design of Robust Torque Controller for an Internal Combustion Engine with Uncertainty (내연기관의 강인한 토크제어를 위한 제어계 설계법)

  • Kim, Young-Bok;Jeong, Jeong-Soon;Lee, Kwon-Soon;Kang, Heui-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1029-1037
    • /
    • 2010
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved and the demanded objectives are satisfied. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameters in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, in this paper, we consider the robust stability problem of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is shown. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition, then a gain tuning can be carried out to suppress the influence of the plant uncertainties.

A Stochastic Dynamic Programming Model to Derive Monthly Operating Policy of a Multi-Reservoir System (댐 군 월별 운영 정책의 도출을 위한 추계적 동적 계획 모형)

  • Lim, Dong-Gyu;Kim, Jae-Hee;Kim, Sheung-Kown
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • The goal of the multi-reservoir operation planning is to provide an optimal release plan that maximize the reservoir storage and hydropower generation while minimizing the spillages. However, the reservoir operation is difficult due to the uncertainty associated with inflows. In order to consider the uncertain inflows in the reservoir operating problem, we present a Stochastic Dynamic Programming (SDP) model based on the markov decision process (MDP). The objective of the model is to maximize the expected value of the system performance that is the weighted sum of all expected objective values. With the SDP model, multi-reservoir operating rule can be derived, and it also generates the steady state probabilities of reservoir storage and inflow as output. We applied the model to the Geum-river basin in Korea and could generate a multi-reservoir monthly operating plan that can consider the uncertainty of inflow.

Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System (장기 안정성을 고려한 경질유 유량표준장치 불확도 평가)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system

The $H_{\infty}$ control of the uncertainty for the hydraulic fluid valve-motor system (유압 밸브-모터 시스템의 불확실성에 대한 $H_{\infty}$ 제어)

  • Kim, D.S.;Lee, J.H.;Yoo, S.H.;Lee, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.676-681
    • /
    • 2000
  • This study describes a hydraulic fluid property compensator under the various operating conditions. Because hydraulic fluid systems have much more excellent features than other control systems, they are used in many fields. However, the characteristics of hydraulic fluid are changed due to various operating conditions. This phenomenon is called uncertainty. Especially, bulk modulus is considered as the most dominant parameter in this study. Under the wide range of temperature and pressure, bulk modulus is changed. In order to overcome the uncertainty, $H_{\infty}$ technique will be used for this study. Spectral factorization, model-matching problem and controller parametrization are also applied to achieve the desired robust control action. Designed controller using the $H_{\infty}$ technique, is adopted for the hydraulic fluid valve-motor system.

  • PDF