• Title/Summary/Keyword: Operating Time of Battery

Search Result 110, Processing Time 0.026 seconds

Effect of Electrolyte Flow Rates on the Performance of Vanadium Redox Flow Battery (바나듐레독스흐름전지 전해질 유량에 따른 성능변화)

  • LEE, KEON JOO;KIM, SUNHOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.324-330
    • /
    • 2015
  • The electrolyte flow rates of vanadium redox flow battery play very important role in terms of ion transfer to electrolyte, kinetics and pump efficiency in system. In this paper a vanadium redox flow battery single cell was tested to suggest the optimization criteria of electrolyte flow rates on the efficiencies. The compared electrolyte circulation flow rates in this experimental work were 15, 30 and 45 mL/min. The charge/discharge characteristics of the flow rate of 30 mL/min was the best out of all flow rates in terms of charging and discharging time. The current efficiencies, voltage efficiencies and energy efficiencies at the flow rate of 30 mL/min were the best. The IR losses obtained at thd current density of $40mA/cm^2$, at the flow rates of 15, 30 and 45 mL/min were 0.085 V, 0.042 V and 0.115 V, respectively. The charge efficiencies at the current density of $40mA/cm^2$ were 96.42%, 96.45% and 96.29% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The voltge efficiencies at the current density of $40mA/cm^2$ were 77.34%, 80.62% and 76.10% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. Finally, the energy efficiencies at the current density of $40mA/cm^2$ were 74.57%, 77.76% and 73.27% for the electrolyte flow rates of 15, 30 and 45 mL/min, respectively. The optimum flow rates of electrolytes were 20 mL/min in most of operating variables of vanadium redox flow battery.

Study on the low power consumption of active RFID tag system (저전력 능동형 RFID 태그 시스템에 대한 연구)

  • Kim, Ji-Tae;Lee, Kang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1419-1435
    • /
    • 2015
  • In this study an active RFID system of low power consumption is proposed, for which we improved the tag collection algorithm of ISO/IEC 18000-7 standard and significantly reduced the tag collection time. We classified the type of power consumption according to the operating mode of active RFID and proposed the method which can accurately estimate battery life time. By calculating the power consumptions of proposed and current methods, we can compare the battery life times of both methods. Through this analysis we can demonstrate the superiority of the proposed method in battery life time.

Photovoltaic Hybrid Systems Reliability and Availability

  • Zahran, Mohamed B.A.
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.145-150
    • /
    • 2003
  • Reliability, availability, and cost have been the major concerns for photovoltaic hybrid systems since their beginning as primary sources for much critical applications like communication units and repeaters. This paper descnbes the performance of two hybrid systems, photovoltaic-battery, wind-turbine coupled with the public-grid (PVBWG) hybrid system and photovoltaic-battery, wind-turbine coupled With the diesel generator (PVBWD) hybrid system The systems are sized to power a typical 300W/48V de telecommunication load continuously throughout the year Such hybrid systems consist of subsystems, which in turn consist of components Failure of anyone of these components may cause failure of the entire system. The reliability and availability basics, and estimation procedure for the two proposals are introduced also in this paper. The PVBWG and PVBWD system configurations are shown with the relevant mean-time-between-faIlure (MTBF) and failure rate (${\lambda}$) of each component. The characteristics equations of the two systems are deduced as a function of operating hours and the percentage of sun and wind availabilities per day. The system probability failure as well as the reliability is estimated based on the fault tree analysis technique. The results show that, by using standard or normal components MTBF, the PVBWG is more reliable and the time of periodic maintenance period is more than one year especially in the rich sites of both sun and wind, but PVBWD competes else Also, in the first five years from the system installation, the system is quit reliable and may not require any maintenance. The results show also, as the sun and wind are available, as the system reliable and available.

A development of an independent electric power generating portable flashlight by using solar battery (태양전지를 이용한 자가발전 손전등 개발에 관한 연구)

  • Kim, Hong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1795-1801
    • /
    • 2009
  • In this study, a portable flashlight which can manually generate the electricity by using sunlight was developed so that it can be used in the extreme environmental condition such as no-electricity condition. Battery is charged by using solar battery during the day, but when sunlight is not avalible during the night or rainy day, a handle is rotated to generate the electricity in order to charge the battery manually. To improve the brightness of the light, light is concentrated by using the optical lens. Low electric consumption circuit is used for the longer operating time by suppress electrical consumption while lamp is discharged. A circuit is designed and used for steady electrical curris dand voltage to insure steady battery charging. Super-discharge circuit and protection circuit are used for the super discharge of battery when it is not used for a long time. Also the constant charge is possible by using houseware adapter. As a result, a portable flashlight is designed to charge with sunlight during day, and with houseware adapter during night. A portable flashlight is also designed to irradiate longer distances by improvement of the brightness of the light using the optical lens. Thus, it forms white natural ray of light making possible for night reading.

Design and Implementation of prototype model of Smart Diffuser using Smart Phone (스마트폰을 이용한 스마트 디퓨저의 프로토 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.149-154
    • /
    • 2020
  • This paper presented a design and a implementation of prototype model which is the smart diffuser device controlled by using Bluetooth technology in the smart phone. We used the ultrasonic waves oscillator so that the smart diffuser was able to spray oil into a device. The device was developed to find out the high brightness led colors switched during spraying the oil. By using the Li-Po battery of 40mAh capacity, we were able to design this portable device was prolonged available time to use and to solve the charging time problem. We realized the availability of prototype model which is using the Bluetooth Low Energy for operating the low power driving.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

Analysis of Operating Time of Li-polymer Secondary Cell with or Without Flyback Converter Active Balancing BMS (Flyback Converter Active Balancing BMS 적용 유·무에 따른 리튬폴리머 이차전지 가용시간 분석)

  • Kim, Young-Pil;Choi, Chul-Hyung;Ko, Seok-Cheol;Kim, Si-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.786-791
    • /
    • 2017
  • In this paper, the run time of Li-polymer secondary cell with and without Active Balancing BMS is analyzed. The Active Balancing System using Flyback Converter with two-way power control facility, his designed for optimal characteristics of balancing. The run time of Li-polymer secondary cell is drastically increased employing the Flyback Convert Active Balancing BMS. The run time performance of Li-polymer secondary cell with or without Flyback Converter Active Balancing BMS is analyzed with the discharging and charging experiment of Li-polymer secondary cell.

Study on The Technical Improvement in Wireless Power Communication System with Low Power (무선전력통신 시스템의 저전력화를 위한 기술적 개선방안)

  • Chung, Sung-In;Lee, Seung-Min;Lee, Hyo-Sung;Lee, Hug-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • This study proposes the algorithm which drives the powerless without battery. The exiting wire or RF type dosimeter, which is the computation of the real time with battery on the dose radiation exposure, In the Wired dosimeter, it is trouble to need the maintenance and management by periods. Besides, the case of the RF typed dosimeter with battery, it is requested to size bigger and to replace battery frequently and so on. Especially RF typed dosimeter has trouble to need for the embody with large power consumption on the contactless typed dosimeter. As the method for the low power, the study designed to be down the operating clock of the MPC, to improve the efficiency of the rectifier, to eliminate the external memory and the DC-DC converter for the simplification of the circuit We convince our research contributes not only to understand the simplified circuit and miniaturization, but also to help the design and application technology of the powerless dosimeter.

The Influence of Operating Conditions on Fuel Economy of the Hybrid Electric Vehicle (운전조건이 하이브리드 자동차의 연비에 미치는 영향 연구)

  • Lee Youngjae;Kim Gangchul;Pyo Youngdug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-40
    • /
    • 2005
  • In the present study, the influence of operating conditions on fuel economy for hybrid electric vehicle was analyzed. In order to accomplish this, vehicle speed, engine speed, battery current and voltage, SOC (state of charge),motor speed and torque, generator speed and torque, engine coolant temperature etc. were measured in real time. The tests were carried out under different driving cycles which are urban and highway cycles, KOREA CITY cycle and on-road driving, and also under various operating conditions such as different initial SOC, with or without regenerative braking etc.. Generally, conventional gasoline engines show a poor fuel economy at stop and go driving, because braking energy is wasted and the engine is operated in low thermal efficiency regions. However, in case of hybrid vehicles, higher fuel economy can be obtained because of utilizing the maximum thermal efficiency regions of engine, idling stop of engine, and regenerative braking etc..

Analysis of failure rate according to capacitor position of bidirectional converter (양방향 컨버터의 커패시터 위치에 따른 고장률 분석)

  • Kim, Ye-rin;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.261-265
    • /
    • 2019
  • We analyze the failure rate change of a conventional bidirectional converter and a modified one which moves an output capacitor towards propulsion battery. We analysis of the circuit structural homogeneity and the difference between both converters, and confirm that the capacitor working voltage is reduced by changing the capacitor position. After obtaining the capacitor failure rate according to voltage stress factor and operating temperature, it is applied to the fault-tree of the bidirectional converter to obtain the overall failure rate of the converter. We analyzes the advantages and disadvantages of design changes by comparing and analyzing the failure rate and mean time between failures (MTBF) according to operating temperature and capacitance value.