• 제목/요약/키워드: Openings in the Facade

검색결과 10건 처리시간 0.021초

전면형 이중외피의 절기별 운용성능 분석 (Analysis for Seasonal Operation Performance of Multistory Facade)

  • 임혜진;조수;성욱주;임상훈;한찬훈
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.111-120
    • /
    • 2012
  • In this study, to present the data in the internal thermal condition of Double skin facade were measured internal temperature and inlet and outlet openings wind speed of double skin facade. Measurements were similar to temperatures in the upper double skin facade. Especially in summer, temperature stratification is through to be unfulfilled seamlessly despite inlet and outlet openings open. Double skin facade inlet and outlet openings of the air flow rate was slower outlet openings of the air flow rate than inlet openings of the air flow rate.

창호의 개폐조절을 기반으로 한 리스펀시브 뉴메틱 파사드 (Responsive Pneumatic Facade with Adaptive Openings for Natural Ventilation)

  • 이지선;이현수
    • 대한건축학회논문집:계획계
    • /
    • 제33권12호
    • /
    • pp.29-39
    • /
    • 2017
  • The building skins are important architectural elements in both functional and aesthetical aspects. This study focuses on developing a responsive facade with autonomous opening and closing behaviors in accordance with environmental conditions and user requirements for natural ventilation for the office building. The pneumatic ETFE panels are applied as the skin materials taking advantage of the efficiency of the inflatable skin of lightness, architectural performance and sustainable material properties. The biomimetic design methodology is taken for its innovative and visionary concept for the facade design. The interpretation of the building facade in analogy to natural organisms delivers functional and aesthetic characters. By exploring the structural movements of the plant pores, the facade control is developed to be autonomous by the parameter values. The facade opening and closing configurations are derived through parametric modeling and visualization programming. Through the application of this study, expected results are to improve user comfort and energy efficiency.

파리 집합주거 입면계획 경향에 관한 연구 - 2011년 파리 집합주거 공모전 당선작을 중심으로 - (A Study on the Elevation and Facade Design of the Multi-family Housing in Paris - A Survey of the Winning Projects in the Multi-family Housing Project Competition in Paris in 2011 -)

  • 석정호
    • 한국주거학회논문집
    • /
    • 제24권5호
    • /
    • pp.17-26
    • /
    • 2013
  • This study is aimed to investigate the characteristics of the elevations in the contemporary multi-family residential buildings in Paris. The survey was performed by studying 30 buildings which had won the multi-family residential project competitions, held in Paris in 2011. Since 30 buildings in the survey will be constructed in Paris in a couple of years, current trends of the elevations of the multi-family residential buildings can be extracted. Historically and also currently, in France, the multi-family housing has been studied to solve the various social problems; especially in Paris where the historical buildings and the modern and the contemporary buildings stand together in perfect harmony. The uniform elevations of the multi-family residential buildings in Korea, have been consist problems in the country. By studying the building elevations in Paris, the solutions to solve the current problems and to improve the situation, can be found. The study will be discussed in three different categories. First of all, the volume and the mass of building in the survey buildings, will be analyzed. Secondly, the openings in the facade, such as the windows and the balconies of the survey projects, will be analyzed. Finally, the materials and the colors of the facade will be discussed. By analyzing the elevations of the multi-family residential building projects, which had won the competitions, and are soon to be built in Paris, the various experiments and the attempts in building elevations, currently happening in Paris which is mostly known as a Haussmann style city, can be presumed, as well as the willingness of the city to reserve the historic buildings in the city.

Wind-induced dynamic response of recessed balcony facades

  • Matthew J. Glanville;John D. Holmes
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.193-202
    • /
    • 2024
  • Modern high-rise tower designs incorporating recessed balcony cavity spaces can be prone to high-frequency and narrow-band Rossiter aerodynamic excitations under glancing incident winds that can harmonize and compete with recessed balcony volume acoustic Helmholtz modes and facade elastic responses. Resulting resonant inertial wind loading to balcony facades responding to these excitations is additive to the peak design wind pressures currently allowed for in wind codes and can present as excessive facade vibrations and sub-audible throbbing in the serviceability range of wind speeds. This paper presents a methodology to determine Cavity Amplification Factors to account for façade resonant inertial wind loads resulting from balcony cavity aero-acoustic-elastic resonances by drawing upon field observations and the results of full-scale monitoring and model-scale wind tunnel tests. Recessed balcony cavities with single orifice type openings and located within curved façade tower geometries appear particularly prone. A Cavity Amplification Factor of 1.8 is calculated in one example representing almost a doubling of local façade design wind pressures. Balcony façade and tower design recommendations to mitigate wind induced aero-acoustic-elastic resonances are provided.

Mitigating the effect of urban layout on torsion of buildings caused by infill walls

  • Noorifard, Azadeh;Tabeshpour, Mohammad Reza;Saradj, Fatemeh Mehdizadeh
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.151-168
    • /
    • 2022
  • Torsion is one of the most important causes of building collapse during earthquakes. Sometimes, despite the symmetric form of the building, infill walls disturb the symmetry of the lateral resisting system. The purpose of this research is to investigate the effect of urban layout on developing torsion caused by infill walls. For this purpose, a typological study was conducted based on the conditions of perimeter walls on 364 buildings and then 9 cases were selected. The dimensions of the selected buildings are constant and the conditions of the perimeter walls including facades with openings and cantilevered facades are variable. The selected buildings with 60 different layouts of infill walls were analyzed and the behavior of each one was evaluated based on the torsional irregularity criteria of seismic codes. The results of the analyses showed that if the perimeter walls of a building are symmetric, asymmetric interior walls will not be important in developing torsion and effective parameters in symmetry of the perimeter infill walls are the number of walls, area of openings, aspect ratio, and construction details. Finally, architectural solutions to mitigate the torsional effects of infill walls were proposed for buildings with solid infill walls on some sides, for buildings where the perimeter walls of one side are on the cantilevered part, and for buildings where the perimeter walls of two adjacent sides are on the cantilevered part. In three-sided buildings, where two adjacent façades are cantilevered, it is often impossible to use the potential of the infill walls.

이중외피 건물 난방시스템의 발정제어 및 가변제어를 위한 최적로직의 개발 및 성능평가 (Development and Performance Evaluation of Optimal Control logics for the Two-Position- and Variable-Heating Systems in Double Skin Facade Buildings)

  • 백용규;문진우
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.71-77
    • /
    • 2014
  • This study aimed at developing and evaluating performance of the two logics for respectively operating two-position- and variable-heating systems. Both logics control the heating system and openings of the double skin facade buildings in an integrated manner. Artificial neural network models were applied for the predictive and adaptive controls in order to optimally condition the indoor thermal environment. Numerical computer simulation methods using the MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation) were employed for the performance tests of the logics in the test module. Analysis on the test results revealed that the variable control logic provided more comfortable and stable temperature conditions with the increased comfortable period and the decreased standard deviation from the center of the comfortable range. In addition, the amount of heat supply to the indoor space was significantly reduced by the variable control logic. Thus, it can be concluded that the optimal control method using the artificial neural network model can work more effectively when it is applied to the variable heating systems.

난방시스템 및 개구부의 통합제어를 위한 규칙기반제어법 및 인공신경망기반제어법의 성능비교 (Development of Integrated Control Methods for the Heating Device and Surface Openings based on the Performance Tests of the Rule-Based and Artificial-Neural-Network-Based Control Logics)

  • 문진우
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.97-103
    • /
    • 2014
  • This study aimed at developing integrated logic for controlling heating device and openings of the double skin facade buildings. Two major logics were developed-rule-based control logic and artificial neural network based control logic. The rule based logic represented the widely applied conventional method while the artificial neural network based logic meant the optimal method. Applying the optimal method, the predictive and adaptive controls were feasible for supplying the advanced thermal indoor environment. Comparative performance tests were conducted using the numerical computer simulation tools such as MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation). Analysis on the test results in the test module revealed that the artificial neural network-based control logics provided more comfortable and stable temperature conditions based on the optimal control of the heating device and opening conditions of the double skin facades. However, the amount of heat supply to the indoor space by the optimal method was increased for the better thermal conditioning. The number of on/off moments of the heating device, on the other hand, was significantly reduced. Therefore, the optimal logic is expected to beneficial to create more comfortable thermal environment and to potentially prevent system degradation.

축소모형을 이용한 가변 유리투과체의 채광유형별 성능평가 비교 (Comparative Performance Evaluation of Advanced Daylighting Glazing Systems by Scale Model Measurements)

  • 정인영;김정태
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.27-35
    • /
    • 2004
  • The conventional way to acquire sufficient amount of daylight in interiors is to provide large openings with clear glass. The use of clear glass on the whole facade, however, might cause a sort of visual problem because of the harness of direct sun and brighter sky surface than expected. They should be filtered in opticalway or bounced in the architectural. One of the common solutions for the problem might be the use of photometric glasses with various transmittances for the glass walls. This paper deals with performance data related to the impact of various transmittal glazing materials for window systems in terms of daylighting. A series of scale model measurements was carried out with the fundamental configuration of a commonly used all-glass facades. Additionally some experimental performance index was issued for the better expression of the need of natural lighting.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

동절기 온실의 열 손실에 관한 실태조사 - 경남지역을 중심으로 - (Current on the Heat Loss in Greenhouses during Winter Season - Case Study Based on Gyeongnam Area -)

  • 임재운;윤성욱;김현태;윤용철
    • 생물환경조절학회지
    • /
    • 제22권1호
    • /
    • pp.73-79
    • /
    • 2013
  • 본 연구에서는 온실의 열손실을 최소화할 방안을 모색하기 위하여 경남지역에 있는 시설 농가를 대상으로 열화상 카메라를 이용하여 열손실 사례에 대한 실태조사를 실시하였다. 그 결과를 요약하면 다음과 같다. 치마처리 전 후의 두 실험구간의 온도차는 각각 $2.0{\sim}3.0^{\circ}C$$1.0{\sim}2.0^{\circ}C$ 정도인 것을 알 수 있다. 열화상 기기에 의해 계측된 온도와 온도 센서에 의해 계측된 온도와는 상관 관계가 큰 것으로 나타났다. 실태조사 지역 간에 큰 차이는 없었지만 보온용 부직포가 1층인 경우와 2층인 경우를 보면, 1층이 2층에 비해 상대적으로 열손실 크게 나타났다. 그리고 전체적으로 온실의 형태와 무관하게 측장부분과 수평보온커튼의 틈새, 측면과 전 후면 보온용 부직포의 이음부분이 완전히 밀폐되지 않아 열손실이 상대적으로 큰 것으로 나타났다. 특히, 파손된 피복재나 출입문, 환기구, 박공, 바닥부근 등에서 틈새가 생겨서 많은 양의 열이 손실되고 있었다.