• Title/Summary/Keyword: Opening Sequence

Search Result 62, Processing Time 0.019 seconds

ELASTIC CONSTANTS, SHEAR BOND STRENGTH OF TUNNEL RESTORATIVE MATERIALS AND MARGINAL RIDGE STRENGTH OF RESTORED TEETH (터널형 2급와동 충전재의 탄성계수와 전단결합강도 및 수복치의 변연융선 파절강도에 관한 연구)

  • Lee, Ka-Yean;Park, Yeong-Joon;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.746-763
    • /
    • 1996
  • An alternative design to conventional class II cavity preparation for proximal carious lesions is the tunnel preparation. It preserves the marginal ridge intact, thus making it possible to maintain the natural contact relationship with the adjacent tooth and minimize tooth reduction. This in vitro study was purposed to evaluate the effect of the materials' elastic constants and shear-bond strength on the marginal ridge fracture resistance of teeth restored by the tunnel technique, and to find the materials of choice for tunnel restorations. $Resinomer^{(R)}$, $Ketac-silver^{(R)}$, $Miracle-Mix^{(R)}$, and Tytin were used as restorative material. The elastic constants of each restorative material were evaluated by ultrasonic pulse measurement. Young's modulus and bulk modulus of the restorative materials were evaluated in three specimens for each material type. The shear-bond strength of the restorative materials to the dentin surface was measured after thermocycling 400 times between 6 and $60^{\circ}C$, using ten specimens for each material type. For measuring marginal ridge strength, 60 sound extracted molar teeth were distributed into six groups by size. Sound molar teeth were used as a Control group and unfilled prepared teeth were grouped as Unrestored. Another four groups were named Resinomer group, Ketac-Silver group, Miracle Mix group, and Tytin group by type of restorative material. Tunnel cavity preparation was done with ' 1/2, 2, and 4 round burs in sequence. Initial access to proximal surface was made through an occlusal access preparation started at least 2mm from the marginal ridge, and the proximal opening was formed about 2.5mm below the marginal ridge. After restoration and thermocycling, marginal ridge strength was measured using a universal testing machine. The results were as follows: 1. The Young's modulus of $Tytin^{(R)}$ was 63.95 GPa, followed by $Ketac-Silver^{(R)}$ 27.60 GPa, $Miracle-mix^{(R)}$ 18.48 GPa, and $Resinomer^{(R)}$ 10.74 GPa showing significant differences between the groups(P<0.05). The bulk modulus of the materials showed the same order as Young's modulus. The value of $Tytin^{(R)}$ showed 59.57 GPa indicating that it will deform less than other materials under the same stress. It was followed by $Ketac-Silver^{(R)}$ 23.57 GPa, Miracle $Mix^{(R)}$ 12.50 GPa, and $Resinomer^{(R)}$ 11.60 GPa. 2. The Resinomer group had a shear-bond strength of 7.41 MPa which was significantly higher than those of the Ketac-Silver group (1.80 MPa) and the Miracle Mix group (2.84 MPa) (P<0.01). All the specimens of Tytin group detatched from the dentin surface during thermocycling. 3. The mean marginal ridge strength of the Unrestored group(46.14 kgf) was significantly lower than that of the Control group (84.24 kgf) (P<0.01). The marginal ridge strength of teeth restored by the tunnel technique was, in order, Ketac-Silver group 74.06 kgf, Miracle Mix group 73.36 kgf, Resinomer group 63.47 kgf, and Tytin group 58.76 kgf. The Ketac-Silver, Miracle Mix, and Resinomer groups showed no significant difference with the Control group (P>0.05), but the Tytin group showed significantly lower strength compared to the Control group(P<0.05). The results showed that the marginal ridge strength of the teeth restored by the tunnel technique was not significantly lower than that of sound teeth. They also demonstrated that the bonding strength of the restorative material to the tooth surface should be high and the modulus of elasticity should not be lower than that of the tooth in order to restore the marginal ridge strength to its natural condition.

  • PDF

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF