• Title/Summary/Keyword: Opening Pressure

Search Result 637, Processing Time 0.027 seconds

Study on Characteristics of Nipple Fracture for Fluid Path Control of 3-Way Ultra-High Pressure Valve (3-way 초고압 밸브의 유로제어를 위한 니플 파단 특성에 관한 연구)

  • Kang, Dae-Hee;Ranjit, Shrestha;Chung, Yoon-Jae;Kim, Won-Tae
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.865-871
    • /
    • 2018
  • The 3-way valve have been used as a valve for opening and closing the valve by the flow control in the pressure system of the cryogenic and high pressure environment. In this paper, numerical analysis and experimental study on fracture nipple of 3-way ultra high pressure valve applied to space launch vehicle was carried out. We have developed a 3-way valve numerical simulation modeler of cryogenic environment using commercial software ANSYS 18.2. As results of numerical analysis, optimum nipple condition was derived. In addition, a 3-way valve prototype was fabricated and the fracture test was performed and compared with the numerical analysis results.

Evaluation of Effect of Low Opening Operation on Increasing Wear of Bearing Bushings of Guide Vanes used in Hydropower Plants (수력발전소 가이드 베인 저개도율 운전에 따른 가이드 베인 베어링 부슁의 마모 가속효과 평가)

  • Kim, Jong-Sung;Kim, Se-Na
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1267-1274
    • /
    • 2012
  • A guide vane plays a key role in controlling the flow rate of water supplied to the turbine of a hydropower plant. It has been reported that guide vane bearing bushings are subjected to considerable wear, which requires them to be maintained. An ancillary service such as frequency control and black start causes cyclic low opening operation of the guide vanes. It is empirically well known that such operation increases the wear rate of the guide vane bearing bushing. In this study, the effect of low opening operation on the increasing wear of the guide vane bearing bushing is quantitatively assessed via finite element flow analysis, finite element stress analysis, and relative wear evaluation. As a result of the assessment, it is identified that the pressure applied on the guide vane surface increases and the contact length between the outer surface of the guide vane stem and the inner surface of the bearing bushing decreases with a decrease in the opening of the guide vane. In addition, low opening of the guide vanes results in an increase in the relative wear owing to the generation of high contact pressure on the bearing bushing surfaces.

Numerical Simulation of The Pressure-Flow Control Characteristics of Shunt Valves Used to Treat Patients with Hydrocephalus (수두층 치료용 션트밸브의 압력-유량 제어특성 수치해석)

  • 장종윤;이종선;서창민
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.403-412
    • /
    • 2001
  • The Present study analyzed the pressure-flow characteristics of a Korean shunt valve. Changes in the characteristic currie depending on the design parameters were also investigated. The Korean shunt valve used in the present study was constant pressure type and our analyses were validated through experiments. We applied fluid-structure interaction to solve the flow dynamic Problem because the small diaphragm in the valve was made from flexible silicone elastomers. Considering the material nonlinearity of the hyper-elastic material. the Mooney-Rivlin approximation was employed. The results of the numerical analyses were close to the experimental results The major Pressure drop was observed to happen in the small diaphragm. The slope of the pressure-flow characteristic curve was computed to be 0.37mm$H_2O$.hr/cc, which was similar to the average value of commercial shunt valves. 0.40mm$H_2O$.hr/cc. Therefore. our valves analyzed in the Present study showed a Proper Pressure control characteristics of the constant pressure type shunt valves. The opening pressure could be controlled by adjusting the amount of predeflection of the valve diaphragm. In order to obtain opening pressures of 25mm$H_2O$ and 80mm$H_2O$, respectively, and the required predeflection was found to be 10.2$\mu$m and 35.3$\mu$m. The flow orifice size was found to be within 10$\mu$m during valve operation Therefore, Precision design and manufacturing techniques are necessary for successful operations of the shunt valve. The study indicated the amount of predeflection as well as the magnitude of corner rounding of the diaphragm edge are important design parameters to influence the slope of the pressure-flow characteristic curve.

  • PDF

Optimal Design of Thrust Surface Oil Groove of a High Side Scroll Compressor (고압식 스크롤 압축기 스러스트 오일 그루브 최적 설계)

  • Kim, Hyun-Jin;No, Young-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.127-133
    • /
    • 2017
  • Performance analysis has been carried out on a high side scroll compressor that had a fixed scroll equipped with a circular oil groove on its thrust surface. Oil was supplied to the oil groove through an intermittent opening from a high pressure oil reservoir formed inside the orbiting scroll hub. Oil in the groove was then delivered to both suction and back pressure chambers by pressure differentials and viscous pumping action of the orbiting scroll base plate. Mathematical modeling of this oil groove system was incorporated into a main compressor performance simulation program for an optimum oil groove design. The study findings were as follows. Pressure in the oil groove can be controlled by changing its configuration and the oil passage area. With an enlarged oil passage, the pressure in the oil groove heightens due to an increased flow rate, but the pressure elevation in the back pressure chamber is small, resulting in reduced friction loss at the thrust surface between the two scrolls. On the other hand, by increasing the oil passage area, the oil content in the refrigerant flow increases. Considering all these factors, the energy efficiency ratio could be improved by about 3.6% under the ARI condition by an optimal oil groove design.

Prognosis Followoing the Arthrocentesis for the Painful TMJ (악기능 장애에 있어 악관절세척술의 효과)

  • Lee, Sunmi;Kim, Jiyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.3
    • /
    • pp.43-47
    • /
    • 2015
  • Purpose : The aim of this study was to report a follow-up study on the prognosis following the arthrocentsis for the painful temporomandibular dysfunction not responsible to the conservative splint therapies. Arthrocentsis of TMJ is a simple precedure that can be performed in the out-patient clinic under the local anesthesia without any reported complications. Method : Seventy patients had been followed after the arthrocentsis for over 6 months. Maximum mouth opening, TMJ pain, TMJ noise, and their changes by time were examined and compared statistically. The effectiveness of the treatment was evaluated in terms of the postoperative range of maximal mouth opening (MMO) and the degree of postoperative pain score. Predictors which was analyzed were age, duration of painful locking, MMO, the degree of pain, preoperative clicking and the amounts of irrigation fluid. Result : The result of this study were as follow; 1) Mouth opening was improved from 32.6 mm to 42.4 mm in the maximum inter-incisal distance. 2) TMJ pain was decreased in 45.7%. 3) TMJ clicking and noise disappeared in 60.0%, but recurred in 40.0%. Conclusion : Amounts of irrigated solution recovered to normal MMO and the appeareance of perioperative clkicking may be predictors of the successful results of arthrocenetesis of ADD without reduction of TMJ.

Simple solutions of an opening in elastic-brittle plastic rock mass by total strain and incremental approaches

  • Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.585-600
    • /
    • 2017
  • This study deals with simple solutions for a spherical or circular opening excavated in elastic-brittle plastic rock mass compatible with a linear Mohr-Coulomb (M-C) or a nonlinear Hoek-Brown (H-B) yield criterion. Based on total strain approach, the closed-form solutions of stresses and displacement are derived simultaneously for circular and spherical openings using original H-B and M-C yield criteria. Two simple numerical procedures are proposed for the solution of generalized H-B and M-C yield criteria. Based on incremental approach, the similarity solution is derived for circular and spherical openings using generalized H-B and M-C yield criteria. The classical Runge-Kutta method is used to integrate the first-order ordinary differential equations. Using three data sets for M-C and H-B models, the results of the radial displacements, the spreading of the plastic radius with decreasing pressure, and the radial and circumferential stresses in the plastic region are compared. Excellent agreement among the solutions is obtained for all cases of spherical and circular openings. The importance of the use of proper initial values in the similarity solution is discussed.

Opening Characteristics of a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 개방 특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.989-997
    • /
    • 2017
  • We study opening transient responses of a self-sustainable poppet valve, which is usually used for the main oxidizer shut-off valve of liquid rocket engines. In order to perform numerical analysis, a pneumatic supply system was simulated as an orifice with a diameter of 3.2 mm and the equations of motion of valve moving part were derived. For the validation of the study, a comparison of numerical predictions and experimental results has been done. As one of the practical applications of this study, the employment of an orifice in a high pneumatic pressure has been presented to control the valve opening time.

A Study on the Interaction of Segmented Hydraulic Fractures (다중으로 분할된 수압파쇄균열의 상호작용에 관한 연구)

  • Sim Young-Jong;Kim Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.45-52
    • /
    • 2005
  • Recent observations based on geological evidence and laboratory tests confirm that complex segmentation of hydraulic fractures is common phenomena. It is expected that the segmentation causes mechanical interaction between the fractures and affects fracture opening and measured net pressure. In this study, therefore, the opening of the fractures is computed using boundary collocation method to evaluate the mechanical interaction quantitatively. Also, improved boundary collocation method is suggested to evaluate the displacement of the fracture wall accurately and the reliability of this method is confirmed by comparing with that of the finite element method.

Performance Evaluation Method of a Swing Check Valve (스윙형 역지밸브 성능 평가 방법)

  • Kim, Y.S.;Lee, D.W.;Kim, D.W.;Park, S.K.;Hong, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.881-886
    • /
    • 2003
  • In spite of its simple design, structure and operating mechanism, swing check valves are one of the critical components which adversely affect the safety of the nuclear power plants if they fail to function properly. Therefore, it is important to evaluate the performance condition of the swing check valves in safety-related systems. The performance characteristics of swing check valves include opening characteristics, the minimum required flow velocity, the pressure drop at design flow, the disc stability, and the effect of the upstream disturbances. Among factors to identify the performance of a swing check valve, a method to evaluate the opening characteristics and the minimum required flow velocity, which guarantees to fully open the disc and hold the disc without motion, are presented to determine the operating region of the swing check valve, such as stable, tapping, or oscillation. Based on the determined operating region and opening characteristics, the simple methods of wear and fatigue analyses of the specific parts of the valve are also described.

  • PDF

A Numerical Study of the Effect of Small Passenger Car's Grille Shape on the Aerodynamic Performance (소형 승용 차량의 그릴 형상이 차량의 공력 성능에 미치는 영향에 관한 수치해석 연구)

  • Kim, Jaemin;Cho, Hyeongkyu;Kim, Taekgi;Kim, Moonsang;Kim, Yongsuk;Kim, Yongnyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.74-87
    • /
    • 2015
  • A numerical parametric study has been accomplished to figure out the effect of grille shape built in a small passenger car on the aerodynamic performance such as drag and mass flow rate through CRFM(Condenser Radiator Fan Module). Three grille opening parameters and three grille mesh parameters are selected and adopted to a simple shape passenger car model. This research will provide a design guideline for grille opening geometry and mesh shape in the grille. FLUENT, which is very well known commercial code, hires k-${\epsilon}$ turbulence model at the driving speed of 110km/h with moving wall boundary condition. A porous media condition is prepared to estimate the pressure drop amount through CRFM parts.