• 제목/요약/키워드: OpenSEES

검색결과 148건 처리시간 0.038초

Integrating OpenSees with other software - with application to coupling problems in civil engineering

  • Gu, Quan;Ozcelik, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.85-103
    • /
    • 2011
  • Integration of finite element analysis (FEA) software into various software platforms is commonly used in coupling systems such as systems involving structural control, fluid-structure, wind-structure, soil-structure interactions and substructure method in which FEA is used for simulating the structural responses. Integrating an FEA program into various other software platforms in an efficient and simple way is crucial for the development and performance of the entire coupling system. The lack of simplicity of the existing integration methods makes this integration difficult and therefore entails the motivation of this study. In this paper, a novel practical technique, namely CS technique, is presented for integrating a general FEA software framework OpenSees into other software platforms, e.g., Matlab-$Simulink^{(R)}$ and a soil-structure interaction (SSI) system. The advantage of this integration technique is that it is efficient and relatively easy to implement. Instead of OpenSees, a cheap client handling TCL is integrated into the other software. The integration is achieved by extending the concept of internet based client-server concept, taking advantage of the parameterization framework of OpenSees, and using a command-driven scripting language called tool command language (TCL) on which the OpenSees' interface is based. There is no need for any programming inside OpenSees. The presented CS technique proves as an excellent solution for the coupling problems mentioned above (for both linear and nonlinear problems). Application examples are provided to validate the integration method and illustrate the various uses of the method in the civil engineering.

Simulation of Prestressed Steel Fiber Concrete Beams Subjected to Shear

  • Lu, Liang;Tadepalli, P.R.;Mo, Y.L.;Hsu, T.T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.297-306
    • /
    • 2016
  • This paper developed an analytical software, called Simulation of Concrete Structures (SCS), which is used for numerical analysis of shear-critical prestressed steel fiber concrete structures. Based on the previous research at the University of Houston (UH), SCS has been derived from an object-oriented software framework called Open System for Earthquake Engineering Simulation (OpenSees). OpenSees was originally developed at the University of California, Berkeley. New module has been created for steel fiber concrete under prestress based on the constitutive relationships of this material developed at UH. This new material module has been integrated with the existing material modules in OpenSees. SCS thus developed has been used for predicting the behavior of the prestressed steel fiber concrete I-beams and Box-beams tested earlier in this research. The analysis could well predict the entire behavior of the beams including the elastic stiffness, yield point, post-yield stiffness, and maximum load for both web shear and flexure shear failure modes.

A Framework to Automate Reliability-based Structural Optimization based on Visual Programming and OpenSees

  • Lin, Jia-Rui;Xiao, Jian;Zhang, Yi
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.225-234
    • /
    • 2020
  • Reliability-based structural optimization usually requires designers or engineers model different designs manually, which is considered very time consuming and all possibilities cannot be fully explored. Otherwise, a lot of time are needed for designers or engineers to learn mathematical modeling and programming skills. Therefore, a framework that integrates generative design, structural simulation and reliability theory is proposed. With the proposed framework, various designs are generated based on a set of rules and parameters defined based on visual programming, and their structural performance are simulated by OpenSees. Then, reliability of each design is evaluated based on the simulation results, and an optimal design can be found. The proposed framework and prototype are tested in the optimization of a steel frame structure, and results illustrate that generative design based on visual programming is user friendly and different design possibilities can be explored in an efficient way. It is also reported that structural reliability can be assessed in an automatic way by integrating Dynamo and OpenSees. This research contributes to the body of knowledge by providing a novel framework for automatic reliability evaluation and structural optimization.

  • PDF

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.

하이브리드 실험을 위한 1 또는 3자유도에 대한 제어 기법 (Control Method to Single Degree or Three Degrees of Freedom for Hybrid Testing)

  • 이재진;강대흥;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2409-2421
    • /
    • 2011
  • 본 논문에서는 지진하중에 의한 1경간 1층 강재골조구조에 대한 하이브리드 실험을 수행하였다. 오른쪽 기둥 1개소와 상부의 트러스요소 또는 보요소는 수치해석모형으로, 왼쪽기둥 1개소는 물리적 부분구조모형으로 선택하여 요소의 성능 및 거동을 평가하였다. 실험은 1자유도 또는 3자유도만을 고려하여 실시간으로 하이브리드 실험을 수행하였으며, 이를 위한 제어 알고리즘은 MATLAB/Simulink를 이용한 방법과 OpenSees, OpenFresco와 xPCTarget를 이용하는 방법으로 나누어 수행하였다. 그리고 수치해석모형과 물리적 부분구조모형의 실시간 데이터 통신을 위하여 SCRAMNet을 사용하였다. 파이버단면을 이용한 구조해석이 가능한 OpenSees를 사용하여 수치해석을 실시하였으며, 실시간 하이브리드 실험결과를 이와 비교하였다. 단순한 구조모형을 이용하여 제어시스템의 유효성을 검증하고자 실시간 하이브리드 실험이 실시되었으며, 추후 심각한 비선형성을 갖거나 복잡한 구조물의 하이브리드 실험으로 확장할 예정이다.

  • PDF

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측 (Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves)

  • 김형주;미션호세;송용선;반재홍;백필순
    • 한국지반환경공학회 논문집
    • /
    • 제9권5호
    • /
    • pp.45-52
    • /
    • 2008
  • 본 연구에서는 지반 및 구조물의 문제점을 이상화 하는데 필요한 응용기술을 개발하기 위해 공개되어 있는 소프트웨어 즉 도스용 프로그램을 윈도우상에서 OpenSees 말뚝의 정적 지지지력과 침하를 분석할 수 있도록 하여 윈도우상에서 사용자가 편리하게 전 처리와 후 처리 및 경제조건 처리가 가능하도록 OpenSees프로그램을 개선하였다. 본 연구에 사용된 지지력 분석은 유한요소 해석과 합성된 하중전이함수에 근거한 수치해석방법이다. 본 연구에서는 흙-말뚝의 상호작용에 의한 마찰력과 선단 지지력을 각각 모델링하기 위해 경험적인 비선형 T-z과 Q-z곡선에 의한 하중전이법을 이용하여 하중재하에 따른 침하조건에서의 흙-말뚝의 반응을 나타내었다. 본 연구에서 예측한 정적 지지력과 침하량은 문헌에 의한 정적재하시험 결과와 잘 일치하는 것으로 나타나 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.