• Title/Summary/Keyword: OpenFresco

Search Result 7, Processing Time 0.02 seconds

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

Control Method to Single Degree or Three Degrees of Freedom for Hybrid Testing (하이브리드 실험을 위한 1 또는 3자유도에 대한 제어 기법)

  • Lee, Jae-Jin;Kang, Dae-Hung;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2409-2421
    • /
    • 2011
  • This paper will present hybrid tests to a one bay-one story steel frame structure under ground excitation. A structure used in this paper for hybrid test, to evaluate performance and behavior, is divided into two models; one is numerical model with one column element, and a truss or a beam element, the other is physical substructural model with one beam-column element. All tests considered one or three degrees of freedom to implement real-time hybrid test, and two control algorithms to control hardware are used; one using MATLAB/Simulink, the other using OpenSees, OpenFresco and xPCTarget. In addition, for real-time data communication between numerical and physical substructural models SCRAMNet was used. The results of hybrid tests were compared with one of numerical analysis of numerical model with fiber force-based beam-column elements using OpenSees. Real-time hybrid tests were implemented for the validation of control system with simple structure, and then it will be extended to hybrid test for higher nonlinear or complex structure later on.

  • PDF

CFD simulations of a performance-scaled wind turbine

  • Ye, Maokun;Chen, Hamn-Ching;Koop, Arjen
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.247-265
    • /
    • 2022
  • In the present study, we focus on the CFD simulations for the performance and the rotor-generated wake of a model-scale wind turbine which was designed for wave tank experiments. The CFD simulations with fully resolved rotor geometry are performed using MARIN's community-based open-source CFD code ReFRESCO. The absolute formulation method (AFM) is leveraged to model the rotating wind turbine. The k - ω SST turbulence model is adopted in the incompressible Reynolds Averaged Navier-Stokes (RANS) simulations. First, the thrust and torque coefficients, CT and CP, are calculated at different Tip Speed Ratios (TSR), and the results are compared against the experimental data and previous numerical results. The pressure distribution of the turbine blades at the 70% span is obtained and compared to the results obtained by other tools. Then, a verification study aiming at quantifying the discretization uncertainty of the turbine performance with respect to the grid resolution in the wake region is performed. Last, the rotor-generated wake at the TSR of 7 is presented and discussed.

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.

Two scale seismic analysis of masonry infill concrete frames through hybrid simulation

  • Cesar Paniagua Lovera;Gustavo Ayala Milian
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • This paper presents the application of hybrid-simulation-based adapter elements for the non-linear two-scale analysis of reinforced concrete frames with masonry infills under seismic-like demands. The approach provides communication and distribution of the computations carried out by two or more remote or locally distributed numerical models connected through the OpenFresco Framework. The modeling consists of a global analysis formed by macro-elements to represent frames and walls, and to reduce global degrees of freedom, portions of the structure that require advanced analysis are substituted by experimental elements and dimensional couplings acting as interfaces with their respective sub-assemblies. The local sub-assemblies are modeled by solid finite elements where the non-linear behavior of concrete matrix and masonry infill adopt a continuum damage representation and the reinforcement steel a discrete one, the conditions at interfaces between concrete and masonry are considered through a contact model. The methodology is illustrated through the analysis of a frame-wall system subjected to lateral loads comparing the results of using macro-elements, finite element model and experimental observations. Finally, to further assess and validate the methodology proposed, the paper presents the pushover analysis of two more complex structures applying both modeling scales to obtain their corresponding capacity curves.

Verification of Hybrid Structural Test Technique by Shaking Table Test of a Linear 2-Dimensional Frame Model (소형선형 평면뼈대모형의 진동대실험을 통한 하이브리드실험 기법의 검증)

  • Cho, Sung-Min;Choi, In-Gyu;Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.33-43
    • /
    • 2010
  • This paper deals with the hybrid structural test technique which has been introduced and studied currently in Korea. In this study, a Mini-MOST system which was developed as a part of NEES research was modified and improved to reduce the total simulation time to half of the original system. Using the proposed system together with the 2 dimensional small steel frame specimen, the validity and efficiency of the hybrid test technique is investigated. Even though the hybrid test has been developed as an alternative to the shaking table test and has been studied and applied for a long time in several countries, no attempt has been made to compare it directly with the shaking table test. Therefore, in this study, the hybrid test results are compared with those of the shaking table test as well as with a numerical simulation for the verification of hybrid test. From the comparison and analysis of the test results, it is concluded that the hybrid test can simulate the actual seismic behavior of structural systems very accurately and it can be a good alternative to the shaking table test.

The Efficiency and Performance of Porous Film Containing Freshness Maintenance Ingredients (신선도 유지성분을 포함한 다공성 필름의 성능과 효능)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.810-816
    • /
    • 2009
  • To identify effective food packaging compounds that could significantly affect the freshness of stored food, the efficiency and performance of porous polypropylene film containing mustard oil as a freshness maintenance ingredient was studied by GC-MS analysis and storage testing of bread. AITC (allyl-isothiocyanate)-emitting properties of films impregnated with mustard oil were evaluated by GC-MS. AITC was extracted from mustard oil, and used as a vapor as an effective antimicrobial agent. Films were prepared under four different conditions (the film types were abbreviated 25SF1, 25SF2, 50LF, and IAF) and the amounts of AITC inside vinyl packs constructed using the four films were measured. The results showed that the 25SF2 film (width 25 mm, length 20 cm) yielded a greater amount of AITC than did the 50LF film (width 50 mm, length 20 cm). We confirmed that the amount of gas emission showed better between layer and layer of the film side than the internal film. In storage testing using various films at $35^{\circ}C$ for 25 days, 25SF2 film provided excellent preservation of bread compared with 50LF film. This was in line with the fact that 25SF2 film yielded the highest amount of AITC. Emission capacities AITC of 2 cm film were measured using bottles various volumes (43 mL, 500 mL, 1000 mL) and both closed and open systems. The AITC content of the film in 43 mL bottle was much higher than that yielded by other films in the closed system, and AITC was rapidly emitted, with relatively low residual gas emission after 4 days in an open system. Mustard oil is a useful freshness maintenance ingredient hence, analysis of AITC emission kinetics from various films were helpful to develop films with optimal antimicrobial effects, and will allow application of such films in food packaging systems.