• Title/Summary/Keyword: Open water performance

Search Result 263, Processing Time 0.027 seconds

Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.22-37
    • /
    • 2016
  • This article investigates numerical modeling of surface piercing propeller (SPP) in unsteady open water condition using boundary element method. The home code based on BEM has been developed for the prediction of propeller performance, unsteady ventilation pattern and cross flow effect on partially submerged propellers. To achieve accurate results and correct behavior extraction of the ventilation zone, finely mesh has generated around the propeller and especially in the situation intersection of propeller with the free surface. Hydrodynamic coefficients and ventilation pattern on key blade of SPP are calculated in the different advance coefficients. The values obtained from this numerical simulation are plotted and the results are compared with experiments data and ventilation observations. The predicted ventilated open water performances of the SPP as well as ventilation pattern are in good agreement with experimental data. Finally, the results of the BEM code/experiment comparisons are discussed.

Development and Application of an Open Water Test System for Azimuth Thrusters (아지무스 추진기 단독시험 시스템 개발 및 적용)

  • Lee, Young-Jin;Rhyu, Seong-Sun;Seo, Jong-Soo;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • To research and develop an azimuth thruster, the new type of open water test dynamometers to measure thrust, torque, total thrust and duct force are designed and manufactured by Samsung Ship Model Basin(SSMB). A compact servomotor to be accurately controlled is connected to precise spiral bevel gear through shafting system combined by couplings and main shafts. The dynamometers have shown excellent linearity and repeatability for all components of forces and a torque. Also, the open water tests have been successfully performed to show the performance of the system. In near future, it is expected that the device can be used for the study of scale effects and development of azimuth thrusters.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

Influence of Manufacturing Environment on Delamination of Mixed Cross Laminated Timber Using Polyurethane Adhesive

  • SONG, Dabin;KIM, Keonho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.167-178
    • /
    • 2022
  • To investigate the influence of manufacturing environment on bonding performance of mixed cross laminated wood (CLT) using polyurethane (PUR) adhesive, a boiling water soak delamination test according to the temperature and relative humidity was conducted. The 5-ply mixed CLT consisted of Japanese Larch for external and middle layer and yellow poplar for internal layer. The PUR adhesives with different opening times of 10 and 30 minutes were used. The mixed CLT was manufactured according to pressing times of PUR and manufacturing environments of summer and winter. In case of summer environment, the delamination rate of the mixed CLT with pressing time of 4 hours using a PUR adhesive with open time of 10 minutes met the requirements of KS F 2081. In case of winter environment, the delamination rate of the mixed CLT didn't meet the requirements of KS standard. However, it was possible to confirm the effect of improving the adhesive performance by adjusting the pressing time according to the open time of the adhesive under the manufacturing conditions. The delamination rate of CLT with open time 30 minutes PUR, manufactured by indirect moisture supply methods was 11.2% better than direct moisture supply methods. As a result of delamination test in the same condition of relative humidity and adhesive, it was found that the temperature of manufacturing environment influences the adhesive performance.

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

Low-Cost IoT Sensors for Flow Measurement in Open Channels: A Comparative Study of Laboratory and Field Performance

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.172-172
    • /
    • 2023
  • The use of low-cost IoT sensors for flow measurement in open channels has gained significant attention due to their potential to provide continuous and real-time data at a low cost. However, the accuracy and reliability of these sensors in real-world scenarios are not well understood. This study aims to compare the performance of low-cost IoT sensors in the laboratory and real-world conditions to evaluate their accuracy and reliability. Firstly, a low-cost IoT sensor was integrated with an IoT platform to acquire real-time flow rate data. The IoT sensors were calibrated in the laboratory environment to optimize their accuracy, including different types of low-cost IoT sensors (HC-SR04 ultrasonic sensor & YF-S201 sensor) using an open channel prototype. After calibration, the IoT sensors were then applied to a real-world case study in the Dorim-cheon stream, where they were compared to traditional flow measurement methods to evaluate their accuracy.The results showed that the low-cost IoT sensors provided accurate and reliable flow rate data under laboratory conditions, with an error range of less than 5%. However, when applied to the real-world case study, the accuracy of the IoT sensors decreased, which could be attributed to several factors such as the effects of water turbulence, sensor drift, and environmental factors. Overall, this study highlights the potential of low-cost IoT sensors for flow measurement in open channels and provides insights into their limitations and challenges in real-world scenarios.

  • PDF

Modeling and simulation of VERA core physics benchmark using OpenMC code

  • Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3388-3400
    • /
    • 2023
  • Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.

A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller (선박 프로펠러 표면의 생물부착물이 프로펠러 유체역학적 성능에 미치는 영향에 관한 연구)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Goo, Bonguk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2016
  • The effect of propeller surface roughness condition on ship performance is very significant even the influence of fouling on propeller performance is not well established compared to biofouling on the hull surface. In present study, predictions of open water efficiency of propeller are made for three different fouling conditions, and its application is given for the 7m full-scale propeller of a medium-size tanker in open water condition. The numerical predictions of propeller efficiency loss due to fouling are based on the results from laboratory-scale drag measurements and boundary layer similarity law analysis presented in Schultz (2007) together with an in-house unsteady lifting surface code which is an appropriate tool to predict the effect of propeller surface roughness on propeller performance. The results of this study indicate that the subject propeller with the small calcareous fouling ($k_s=0.001$) can lead to as high as 15 % loss at the propeller operating condition (J=0.5) and the loss of propeller efficiency due to fouling should be evaluated while the ship is operating.

Evaluation of Performance in Semi-Open Type Impeller by Duplex Stainless Material for Ballast Water Centrifugal Pump (듀플렉스 스테인리스강 소재를 응용한 Semi-Open Type 임펠러의 성능 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Gang, Young-Gwan;Lee, Sang-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • A special usage impeller pump for ballast water treatment is part of an offshore plant's structure. It has to maintain a high corrosion resistance in an extreme environment, in which it can contact several kinds of aqueous solutions. The duplex stainless steel used in such severe environments is known to have corrosion resistance and excellent mechanical properties. This study estimated the performance of an impeller pump system designed using duplex stainless steel through a computational fluid dynamics analysis. As a result, it was determined that the pressure drop increases and the impeller performance is lowered if the equivalent roughness is enlarged. The surface precision of the duplex stainless steel must be consistently maintained. If thisis the case, it was determined that the existing STS steel can be substituted for the Duplex stainless steel.

Proposal for Improvement in Prediction of Marine Propeller Performance Using Vortex Lattice Method (와류격자법에 의한 프로펠러 성능추정 향상을 위한 제안)

  • Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • Current trends in propeller design have led to the need for extremely complex blade shapes, which place great demands on the accuracy of design and analysis methods. This paper presents a new proposal for improving the prediction of propeller performance with a vortex lattice method using the lifting surface theory. The paper presents a review of the theory and a description of the numerical methods employed. For 8 different propellers, the open water characteristics are calculated and compared with experimental data. The results are in good agreement in the region of a high advanced velocity, but there are differences in the other case. We have corrected the parameters for the trailing wake modeling in this paper, and repeated the calculation. The new calculation results are more in agreement with the experimental data.