• Title/Summary/Keyword: Open water performance

Search Result 263, Processing Time 0.023 seconds

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

A Numerical Study of Hydrodynamic Forces Acting on Rudders (수치 해석에 의한 단독 타 유체력 계산)

  • 부경태;지용해;김윤수;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, flow around rudder is analyzed by utilizing the numerical calculation, and the rudder open water test is performed to validate the calculation. The aim of this study is to design the new rudder shape to improve manoeuvring performance. In first, flow around two-dimensional rudder section is analyzed to understand the characteristics of section profile. And the calculation for all-movable rudders is performed and compared with results of rudder open water test. It is hard to numerically predict the drag force because the value is sensitive to the turbulence modeling and grid spacing near the wall. However, the lift force is predicted well. And we can prove that concave profile of the rudder section produce more lift and torque than convex one as a experiment. However PANEL method that ignore viscous effect cannot distinguish the difference of them. So, we can look for the numerical tool to be developed the new rudder shape.

Study on CFD Methodology for a Open Channel Type UV Reactor (전산유체역학을 활용한 개수로형 UV소독장비의 해석기법 연구)

  • Hwang, Woochul;Bak, Jeong-Gyu;Kim, Hyunsoo;Lee, Kunghyuk;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.54-59
    • /
    • 2015
  • The performance of UV reactor which is used in water treatment is strongly affected by UV fluence rate and water flow in the UV reactor. Therefore, CFD tools are widely used in designing process of UV reactors. This paper describes the development of a computational fluid dynamics (CFD) methodology that can be used to calculate the performance of open channel type UV reactor used in wastewater treatment plant. All computations were performed using commercial CFD code, CFX, by considering three dimensional, steady, incompressible flow. The Eulerian-Eulerian multi-phase method were used to capture the water-air interface. The MSSS model, provided by UVCalc3D, was used to calculate the UV intensity field. The numerical predictions and calculated UV Dose were compared with experimental dataset to validate the CFD methodology. The reactor performance based on MS2 log reduction was well matched with measurements within 6%.

PROPULSIVE PERFORMANCE PREDICTION OF A DUCTED PROPELLER IN OPEN WATER CONDITION USING CFD (CFD를 이용한 덕트 프로펠러 단독 상태에서의 추진 성능 예측)

  • Lee, K.-U.;Jin, D.-H.;Lee, S.-W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, a numerical prediction on propulsive performance of a ducted propeller in open water condition was carried out by solving Reynolds averaged Navier-Stokes(RANS) equation using computational fluid dynamics(CFD). A configuration of propeller Ka-470 inside duct 19A was considered. Hexahedral grid system was generated by dividing whole computational domain into three separate regions; propeller, duct and outer flow region. A commercial CFD software, ANSYS-CFX was used for numerical simulations. Results were compared with experimental data and showed considerable improvement in accuracy, in comparison to those from surface panel method which is based on potential flow assumption. The results also exhibited the importance of grid system within the gap between the inner surface of duct and blade tip for accurate prediction of propulsive performance of ducted propeller.

Study on Performance Improvement of an Axial Flow Hydraulic Turbine with a Collection Device

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Hirama, Sou;Kikuchi, Norio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • The portable hydraulic turbine we previously developed for open channels comprises an axial flow runner with an appended collection device and a diffuser section. The output power of this hydraulic turbine was improved by catching and accelerating an open-channel water flow using the kinetic energy of the water. This study aimed to further improve the performance of the hydraulic turbine. Using numerical analysis, we examined the performances and flow fields of a single runner and a composite body consisting of the runner and collection device by varying the airfoil and number of blades. Consequently, the maximum values of input power coefficient of the Runner D composite body with two blades (which adopts the MEL031 airfoil and alters the blade angle) are equivalent to those of the composite body with two blades (MEL021 airfoil). We found that the Runner D composite body has the highest turbine efficiency and thus the largest power coefficient. Furthermore, the performance of the Runner D composite body calculated from the numerical analysis was verified experimentally in an open-channel water flow test.

Computation of Four Quadrant Performance for a Marine Propeller in Open Water (박용 프로펠러의 4상한 단독성능 계산)

  • Hyoung-Tae Kim;Jeong-Jung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • A numerical solution method of the incompressible Reynolds-Averaged Navier-Stokes equations is applied for calculating turbulent flows and performances of a marine propeller in open-water, four-quadrant conditions. Computed propeller flows of the model propeller P4381, for which the experimental data of the open-water performances exist, reveal complex viscous-flow characteristics including three-dimensional flow separations in various off-design conditions and also computed propeller thrusts and torques agree quite well with experimental data except some cases for which severe propeller cavitations occurred in the experiment.

  • PDF

Analysis of Treatment Efficiency according to Open-water in Constructed Wetland (인공습지 내 개방수역 조성에 따른 처리효율분석)

  • Kim, Hyung-Chul;Yoon, Chun-Gyeong;Um, Han-Yong;Kim, Hyung-Jung;Haam, Jong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.709-717
    • /
    • 2008
  • The field scale experiment which is constructed with four sets (0.88 ha for each set) of wetland (0.8 ha) and pond (0.08 ha) systems was performed to examine the effect of plant coverage on the constructed wetland performance and to recommend the optimum development and management of macrophyte communities. After six growing seasons of wetlands, plant coverage was about 100%. And the concentration of DO showed low value (1.0~5.4 mg/L). This is caused by a blighted plant consumed dissolved oxygen with decay in water column. As the result, water column went to be anaerobic conditions and T-N removal rate are 58~67%. Dead vegetation increased nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. However, wetland released phosphorus caused by a blighted plant and accumulation, the removal rate of phosphorus might be decreased. To rise of DO concentration, the three open-waters were constructed in cell 3 and 4. Cell 3 has two open-waters (width 10 m, depth 1.8 m) and cell 4 has one open-water (width 20 m, depth 1.8 m). As the result, DO concentration and treatment efficiency of nutrient and BOD were improved. In case that constructed wetland is operated for a long time, physical circulation structure such as open water help continuous circulation of aerobic and anaerobic conditions. Through the constructed open-water, treatment efficiency of phosphorus and nitrogen in wetland could be improved effectively.

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Experimental Investigation For Various Propeller Tunnel Geometry Effect On Propulsion Performance (프로펠러 보호터널 형상이 추진성능에 미치는 영향에 대한 실험적 고찰)

  • Suh, Sung-Bu;Park, Choong-Hwan;Moon, Il-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.40-45
    • /
    • 2007
  • This study was performed to investigate the effect of various propeller tunnel shapes on the propulsion performance of a fishing boat. The propeller tunnel reduces the problem resulting from the open propeller accidentally catching the waste net and cable on the sea, as well as increasing the cruising speed. For 3 different tunnel geometries, the model test is conducted in the circular water channel, and the potential based panel method was applied to analyze the hydrodynamic characteristics of propeller. Also, both results are compared with each other to represent the difference between results of the model scale test and the potential theory. It is expected that these results could be referenced in the design of the propeller tunnel in consideration of the hydrodynamic interaction between the propeller and the tunnel.

A Study of the Influence of Groundwater Level on the System Performance of Open Loop Geothermal System (지하수 수위가 개방형 지열시스템 성능에 미치는 영향에 관한 연구)

  • Kim, Jinsang;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • Open loop geothermal heat pumps have great potential where the groundwater resources are sufficient. Performance of open loop geothermal heat pump systems is considered higher than that of ground source heat pumps. Head and power calculation of submersible pumps, heat pump units, and piping are numerically based on regression data. Results shows that the system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system COPs. The highest achievable cooling system COPs become 6.34, 6.12, and 5.95 as the groundwater levels are 5m, 15m, and 25m. The highest heating system COPs also become 4.59, 4.37, and 4.20. Groundwater level and submersible pump selection greatly influence the system performance of open loop geothermal heat pumps. It needs to be analysed during the design process of open loop geothermal heat pump system, possibly with analysis tools that include wide range of pump product data.