• Title/Summary/Keyword: Open pit

Search Result 104, Processing Time 0.027 seconds

Corrosion Behavior of Aluminium Coupled to a Sacrificial Anode in Seawater (희생양극 하에서 알루미늄의 해수 부식 거동)

  • Kim Jong-Soo;Kim Hee-San
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • Al-Mg alloy, an open rack vaporizer(ORV) material was reported to be corroded in seawater environments though the ORV material was coupled to thermally sprayed Al-Zn alloy functioning a sacrificial anode. In addition, the corrosion behavior based on the calculated corrosion potential did not match the observed corrosion behavior. Hence, the goal of this study is to get better understanding on Al or Al-Mg alloy coupled to Al-Zn alloy and to provide the calculated corrosion potential representing the corrosion behavior of the ORV material by immersion test, electrochemical tests, and calculation of corrosion and galvanic potential. The corrosion potentials of Al and Al alloys also depended on alloying element as well as surface defects. The corrosion potentials of Al and Al-Mg alloy were changed with time. In the meantime, the corrosion potentials of Al-Zn alloys were not. The corrosion rates of Al-Zn alloys were exponentially increased with zinc contents. The phenomena were explained with the stability of passive film proved by passive current density depending on pH and confirmed by the model proposed by McCafferty. Dissimilar material crevice corrosion (DMCC) test shows that higher content of zinc caused Al-Mg alloy corroded more rapidly, which was due to the fact that higher corrosion rate of Al-Zn makes [$H^+$] and [$Cl^-$] more concentrated within pit solution to corrode Al-Mg alloy. Considering electrochemical reactions within pit as well as bulk in the calculation gives better prediction on the corrosion behavior of Al and Al-Mg alloy as well as the capability of Al-Zn alloy for corrosion protection.

Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Rashidi, Shima;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.489-502
    • /
    • 2022
  • In this study, a Gaussian process regression (GPR) model as well as six GPR-based metaheuristic optimization models, including GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, and GPR-SSO, were developed to predict fly-rock distance in the blasting operation of open pit mines. These models included GPR-SCA, GPR-SSO, GPR-MVO, and GPR. In the models that were obtained from the Soungun copper mine in Iran, a total of 300 datasets were used. These datasets included six input parameters and one output parameter (fly-rock). In order to conduct the assessment of the prediction outcomes, many statistical evaluation indices were used. In the end, it was determined that the performance prediction of the ML models to predict the fly-rock from high to low is GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, GPR-SSO, and GPR with ranking scores of 66, 60, 54, 46, 43, 38, and 30 (for 5-fold method), respectively. These scores correspond in conclusion, the GPR-PSO model generated the most accurate findings, hence it was suggested that this model be used to forecast the fly-rock. In addition, the mutual information test, also known as MIT, was used in order to investigate the influence that each input parameter had on the fly-rock. In the end, it was determined that the stemming (T) parameter was the most effective of all the parameters on the fly-rock.

Field Study of Pirquitas mine in Jujuy Province, NW Argentina (아르헨티나 후후이주 삐르키타스광산의 현장조사 연구)

  • Lee, Han-Yeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.189-195
    • /
    • 2007
  • Pirquitas mine was Bolivian type deposits, which Tertiary quartz andesites caused various epithermal quartz veins and deposited minerals of Sn and Ag in it. Main mineral was cassiterite and necessaries were pyrite, arsenopyrite, pynhotite, Probable ore reserve and daily production are 200 million tons and 5 thousand tons, respectively, and both of exploration and pit development are being carried simultaneously, but in near future open pit works can be done. This mine is owned by the Canadian company of "Silver Standard Resources" and it is located on $S22^{\circ}30'25.0",\;66^{\circ}15'22.5"$, 4086m S.L. In view of infrastructure, geological environment and scale of ore reserves it is high potential area for domestic mining companies to participate share ownership.

Polarization Behavior and Corrosion Inhibition of Copper in Acidic Chloride Solution Containing Benzotriazole

  • Sang Hee Suh;Youngjoon Suh
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.137-152
    • /
    • 2023
  • Polarization behavior and corrosion inhibition of copper in acidic chloride solutions containing benzotriazole were studied. Pourbaix diagrams constructed for copper in NaCl solutions with different BTAH concentrations were used to understand the polarization behavior. Open circuit potential (OCP) depended not only on chloride concentration, but also on whether a CuBTA layer was formed on the copper surface. Only when the (pH, OCP) was located well in the CuBTA region of the Pourbaix diagram, a stable corrosion inhibiting CuBTA layer was formed, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) and a long-term corrosion test. The OCP for the CuBTA layer decreased logarithmically with increasing [Cl-] activity in the solution. A minimum BTAH concentration required to form a CuBTA layer for a given NaCl concentration and pH were determined from the Pourbaix diagram. It was found that 320 ppm BTAH solution could be used to form a corrosion-inhibiting CuBTA layer inside the corrosion pit in the sprinkler copper tube, successfully reducing water leakage rate of copper tubes. These experimental results could be used to estimate water chemistry inside a corrosion pit.

Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery (Sentinel-1 InSAR 긴밀도 영상을 이용한 3월5일청년광산의 지표 변화 탐지)

  • Moon, Jihyun;Kim, Geunyoung;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.531-542
    • /
    • 2021
  • Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.

OVERCOMING THE NUTRITIONAL LIMITATIONS OF RICE STRAW FOR RUMINANTS 1. UREA AMMONIA TREATMENT AND SUPPLEMENTATION WITH RICE BRAN AND GLIRICIDIA FOR LACTATING SURTI BUFFALOES

  • van der Hoek, R.;Muttetuwegama, G.S.;Schiere, J.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.4
    • /
    • pp.201-208
    • /
    • 1988
  • Fifty-six lactating Surti buffaloes, fed rice straw, were allocated to seven treatment groups as follows: 1. Straw supplemented with 2% urea (SS) + 1.5kg rice bran (RB) 2. Straw treated with 4% urea in an open stack (TS open) 3. TS open + 1.5 kg RB 4. TS open + 3.0 kg RB 5. TS open + 1.5 kg RB + 3.0 kg Gliricidia (Gl) 6. Straw treated with 4% urea in a closed pit (TS closed) 7. TS closed + 1.5 kg RB + 3.0 kg Gl Milk production, butterfat percentage and liveweight gain of cows and calves were measured and tested with analysis of variance. The results are: - The animals on urea treated straw (group 2) had a higher milk production (p<0.05), higher butterfat production (p<0.05) and less liveweight gain loss (p<0.05) than the animals on urea supplemented straw (group 1). Butterfat percentage also increased by treatment, although not significantly (p>0.05). - Increasing levels of rice bran (groups 3 and 4 compared to 2) increased total milk production and milked quantity of butterfat, while butterfat percentage decreased (p < 0.05). - Milk production increased (p <0.05) with extra rice bran added (group 4 compared to 3), but was not affected (p > 0.05) by Gliricidia addition (group 5 compared to 3). Butterfat percentage dropped with extra rice bran supplement (p <0.05). The lack of response to Gliricidia indicated that protein is not limiting in treated straw, or that Gliricidia protein is partly insoluble. - System of treatment had no effect on milk production (p >0.05), while supplementation with 1.5 kg RB and 3.0 kg Gliricidia increased production and caused a lower butterfat percentage (p <0.05) (groups 2, 5, 6 and 7 compared). A significant (p <0.05) interaction treatment system x supplementation was present. It was concluded, that both treatment and supplementation did affect milk production as well as milk composition. Gliricidia addition gave less effect than rice bran, indicating different requirements for starchy substances in the feed. Treatment of straw does not negatively affect butterfat production, it can increase butterfat production and even butterfat percentage.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

Selection of Environmentally Conscious Manufacturing's Program Using Multi-Criteria Decision Making: A Case Study in Electronic Company

  • Sutapa, I. Nyoman;Panjaitan, Togar W.S.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.123-127
    • /
    • 2011
  • Nowadays, green purchasing, stop global warming, love the mother earth, and others that related to environment become hot issues. Manufactures industries tend to more active and responsive to those issues by adopting green strategies or program like Environmentally Conscious Manufacturing (ECM). In this article, an electronic company had applied 12 ECM Program and tries to choose one of those programs using 6 criteria, such as total cost involved, quality, recyclable material, process waste reduction, packaging waste reduction, and regulation compliance. By using multi-criteria decision making model, i.e. Analytical Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Modified TOPSIS methods, the ECM Program 9 (Open pit) is the best option.

Numerical analysis of a complex slope instability: Pseudo-wedge failure

  • Babanouri, Nima;Sarfarazi, Vahab
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.669-676
    • /
    • 2018
  • The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

A CASE STUDY ON OPEN PIT MINE ROCK SLOPE STABILITY

  • Um, Jeong-Gi
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.109-114
    • /
    • 2002
  • Development of a three-dimensional mine visualization model for a section of the mine is addressed first. Discontinuity orientation and location information was taken from this visualization model for use in slope stability analyses. Estimated shear strength properties of discontinuities and mechanical properties of intact rock from the rock mass samples obtained from the mine are discussed next. The third part of the paper is focused on the results obtained for maximum safe slope angles for the section considered of the mine based on block theory analysis conducted under only the gravitational forces using the mapped discontinuities at the mine. Finally, the effects of water that exist in the rock mass, a tension crack, slope face inclination, overall wedge height and double benching on factor of safety of wedge stability are illustrated through limit equilibrium slope stability analyses conducted on a single tetrahedral wedge belonging to potential key block category that exist in the investigated area of the mine.

  • PDF