• 제목/요약/키워드: Open circuit potential

검색결과 206건 처리시간 0.023초

Effect of PO43-, CO32- and F- anions on the electrochemical properties of the air-formed oxide covered AZ31 Mg alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.150.2-150.2
    • /
    • 2017
  • This research was conducted to investigate in detail the effect of $PO_4{^{3-}}$, $CO_3{^{2-}}$ and $F^-$ anions on the electrochemical properties of the thin air-formed oxide film-covered AZ31 Mg alloy. In this work, native air-formed oxide films on AZ31 Mg alloy samples were prepared by knife-abrading method and the changes in the electrochemical properties of the air-formed oxide film were investigated in electrolytes containing 0.01 M, 0.05 M and 0.1 M of $PO_4{^{3-}}$, $CO_3{^{2-}}$ and $F^-$ anions. It was observed that the trend of open circuit potential (OCP) transients changed only in the solution containing $PO_4{^{3-}}$ ions. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) showed that the resistance of the new surface films formed in fluoride ion containing bath increased with the increase in concentration of fluoride ions but the resistance of surface films formed in carbonate ion containing bath decreased with the increase in concentration of carbonate ions. The potentiodynamic polarization curves illustrated that under anodic polarization, there was growth of porous passive layer only in fluoride ion containing solution while the surface layer formed in phosphate and carbonate ion containing solutions lost its passivity at high anodic potential of $2.5V_{Ag/AgCl}$.

  • PDF

Changes in the electrochemical properties of air-formed oxide film-covered AZ31 Mg alloy in aqueous solutions containing various anions

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.96.2-96.2
    • /
    • 2017
  • This research was conducted to investigate the electrochemical properties of the thin air-formed oxide film-covered AZ31 Mg alloy. In this work, native air-formed oxide films on AZ31 Mg alloy samples were prepared by knife-abrading method and the changes in the electrochemical properties of the air-formed oxide film were investigated in seven different electrolytes containing the following anions $Cl^-$, $F^-$, $SO{_4}^{2-}$, $NO_3{^-}$, $CH_3COO^-$, $CO{_3}^{2-}$ and $PO{_4}^{3-}$. It was observed from open circuit potential (OCP) transients that the potential initially decreased before gradually increasing again in the solutions containing only $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions, indicating the dissolution or transformation of the native air-formed oxide film into new more protective surface films. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) showed that there was growth of new surface films with immersion time on the air-formed oxide film-covered specimens in all the electrolytes; the least resistive surface films were formed in fluoride and sulphate baths whereas the most protective film was formed in phosphate bath. The potentiodynamic polarization curves illustrated that passive behaviour of AZ31 Mg alloy under anodic polarization appears only in $CO{_3}^{2-}$ or $PO{_4}^{3-}$ ions containing solutions and at more than $-0.4V_{Ag/AgCl}$ in $F^-$ ion containing solution.

  • PDF

양극산화 공정시간에 따른 알루미늄 5052 합금의 산화피막 성장 및 내식성 관찰 (Observation of Corrosion Behavior with Aluminum 5052 Alloy by Modulating Anodization Time)

  • Ji, HyeJeong;Choi, Dongjin;Jeong, Chanyoung
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.67-67
    • /
    • 2018
  • The 5xxx series aluminum alloys are recently used in not only marine system but also automotive area because of a low density material, good mechanical properties and better resistance to corrosion. However, Aluminum alloys are less resistant than the purest aluminum such as 1xxx aluminum alloy. Electrochemical anodization technique has attracted in the area of surface treatment because of a simple procedure, a low-cost efficiency than other techniques such as lithography and a large volume of productivity, and so on. Here, The relationship between the corrosion behavior and the thickness of aluminum anodic oxide have been studied. Prior to anodization, The 5052 aluminum sheets ($30{\times}20{\times}1mm$) were degreased by ultra-sonication in acetone and ethanol for 10 minutes and eletropolished in a mixture of perchloric acid and ethanol (1:4, volume ratio) under an applied potential of 20V for 60 seconds to obtain a regular surface. During anodization process, Aluminum alloy was used as a working electrode and a platinum was used as a counter electrode. The two electrodes were separated at a distance of 5cm. The applied voltage of anodization is conducted at 40V in a 0.3M oxalic acid solution at $0^{\circ}C$ with appropriate magnetic stirring. The surface morphology and the thickness of AAO films was observed with a Scanning Electron Microscopy (SEM). The corrosion behavior of all samples was evaluated by an open-circuit potential and potentio-dynamic polarization test in 3.5wt% NaCl solution. Thus, The corrosion resistance of 5052 aluminum alloy is improved by the formation of an anodized oxide film as function of increase anodization time which artificially develops on the metal surface. The detailed electrochemical behavior of aluminum 5052 alloy will be discussed in view of the surface structures modified by anodization conditions such as applied voltages, concentration of electrolyte, and temperature of electrolyte.

  • PDF

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.

Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

  • Bae, Sang-Eun;Oh, Mi-Kyung;Min, Nam-Ki;Paek, Se-Hwan;Hong, Suk-In;Lee, Chi-Woo J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1822-1828
    • /
    • 2004
  • Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. -0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near -1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxidecovered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogenterminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

TiO2 박막 성장에 의한 광전기화학 물분해 효율 변화 (TiO2 Thin Film Growth Research to Improve Photoelectrochemical Water Splitting Efficiency)

  • 김성규;조유진;진선화;서동혁;김우병
    • 한국재료학회지
    • /
    • 제34권4호
    • /
    • pp.202-207
    • /
    • 2024
  • In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.

수종 임플랜트 금속의 내식성에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS)

  • 전진영;김영수
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

$H_O_2$ 가 304L 스텐리스강의 부식거동에 미치는 영향 (Effect of $H_O_2$ on the Corrosion Behavior of 304L Stainless Steel)

  • Song, Taek-Ho;Kim, In-Sup;Park, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.453-462
    • /
    • 1995
  • 사용후 핵연료 저장구조재의 구조적 안정성자 관련해서, 감마선 조사 생성물로 알려져 있는 $H_2O$$_2$를 전해질에 주입시키었을 때, $H_2O$$_2$가 저장구조재인 304L스텐리스강의 부식거동에 어떤 영향을 미치는가를 조사하였다. 실험결과, $H_2O$$_2$는 304L 스텐리스강의 부식전위를 상승시키고 Pitting 전위를 감소시킴으로써 부동태 영역을 줄이고 pitting 저항성을 감소시키는 것으로 나타났다. 이는 감마선 조사에 의한 부식 거동 변화와 유사한 결과라고 볼 수 있으며, 또한 산소농도증가에 의한 부식거동 변화와 유사한 결과로 해석되었다. 재부동태형성전위가 $H_2O$$_2$의 존재로 증가하는데, 이로써 응력부식균열임계전위는 약간 상승할 것으로 추론되었다. 그러나, $H_2O$$_2$ 농도가 6.3$\times$$10^{-6}$M 이하로 떨어질 경우, $H_2O$$_2$는 부식거동에 영향을 주지 못했다. 이는 대기압상태에서 용존된 $O_2$환원반응속도에 비해 $H_2O$$_2$환원반응속도가 작기 때문이라고 해석되었다. 중성용액보다 산성 및 염기성 용액에서, $H_2O$$_2$가 부식거동에 미치는 영향이 작아졌는데, 이는 산성용액에서는 높은 H$^{+}$ 농도 때문에, 염기성용액에서는 le Chatelier의 원칙 때문인 것으로 해석되었다.

  • PDF

산란 입자를 포함하는 염료감응 태양전지용 $TiO_2$ 전극 제조 (Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells)

  • 이진형;이태근;김철진
    • 마이크로전자및패키징학회지
    • /
    • 제18권2호
    • /
    • pp.57-62
    • /
    • 2011
  • 염료 감응 태양 전지(Dye-Sensitized Solar Cells: DSSCs)의 에너지 변환효율은 $TiO_2$ 전극의 입자 크기, 구조 및 표면 형태에 의존한다. 높은 비표면적을 갖는 나노 크기의 아나타제 $TiO_2$는 많은 염료를 흡착할 수 있어 변환효율을 증가 시킨다. 또한 전극 내부에서 태양광의 산란을 증가 시키면, 염료가 태양광을 흡수하는 양이 증가하여 효율이 증가할 수 있다. 수열 합성법으로 합성한 $TiO_2$ 분말의 크기는 15-25 nm이고, 결정상은 구형의 anatase 상이다. 0.4 ${\mu}m$$TiO_2$ 산란입자를 합성한 나노 크기의 $TiO_2$ 분말에 혼합하여 전극을 제조하고, DSSCs를 제작한 후 변환효율을 측정하였다. 10% 의 산란 입자가 포함된 DSSCs는 단락전류 3.51 mA, 개방전압 0.79 V, 곡선인자 0.619로 6.86%의 변환 효율을 나타 내었다. 산란 입자의 영향으로 단락전류밀도는 11% 증가하였고, 효율은 0.77% 증가하였다. 산란 입자가 포함되지 않은 DSSCs 보다 산란 입자가 전극으로 들어온 태양광을 산란시켜 전자-홀 쌍의 생성을 증가 시키고, 전자가 전극을 따라 이동하는 경로가 감소하여 효율이 증가하였다. 10% 이상의 산란 입자는 전극 내부에 입자 크기의 큰 기공을 증가 시켜 효율이 감소하였다.