• Title/Summary/Keyword: Open Reading Frame

Search Result 696, Processing Time 0.024 seconds

Cloning, Sequencing and Comparison of Genes for early Enzymes of the Protocatechuate (ortho-Cleavage) Pathway in Pseudomonas putida (Pseudomonas putida의 Protocatechuate 경로에 관여하는 초기 효소들의 유전자의 클로닝 및 염기서열 분석비교)

  • Hong, Bum-Shik;Shin, Dong-Hoon;Kim, Jae-Ho
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.472-476
    • /
    • 1996
  • The major portions of two DNA fragments, one from degradative plasmid, pRA4000 from Pseudomonas putida NCIMB 9866, and the other from degradative plasmid, pRA500 from P. putida NCIMB 9869, which harbor the structural genes for the flavoprotein (pchF) and cytochrome (pchC) subunits of p-cresol methylhydroxylase (PCMH), have been sequenced. The DNA and deduced amino acid sequences for pchC and pchF have been published. In these fragments, a coding region (dhal) for an aldehyde dehydrogenase has been identified. It is proposed that this gene encodes for the aldehyde dehydrogenase which converts p-hydroxybenzyaldehyde to p-hydroxybenzoate. p-Hydroxybezealdehyde is the product of oxidation of p-cresol by PCMH. The fragment from P. putida 9869 also harbors the genes for the ${\alpha}$ (pcaG) and ${\beta}$ (pcaH) subunits of protocatechuate 3,4-dioxigenase. The fragment from 9866 does not have any portion of these genes in the corresponding region A possible open reading frame (ORF) between pchC and pchF is seen for both clones, and a second putative open reading frame (ORF') also exists in the 9866 clone. The gene organizations are dhal-pchC-ORF-pchF-pcaGH for the DNA fragment from 9869, and ORF-dhal-pchC-ORF-pchF for the DNA fragment from 9866.

  • PDF

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • Nam, Ki-Yean;Chung, Dong-Hoon;Choi, Je-Won;Lee, Yun-Seong;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Cloning and Sequence Analysis of the trpB, trpA and 3' trpC(F) Gens of Vibrio metschnikovii Strain RH530 (Vibrio metschnikovii 균주 RH530의 trpB, trpA 그리고 3' trpC(F) 유전자의 클로닝 및 염기서열 결정)

  • Kwon, Yong-Tae;Kim, Jin-Oh;Yoo, Young-Dong;Rho, Hyune-Mo
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.120-125
    • /
    • 1994
  • The genes, trpB, trpA and 3’ trpC(F) of Vibrio metschnikovii strain RH530 were cloned and sequenced. The trpB and trpA genes had open reading frames of 1,173 bp and 804 bp encoding 391 and 268 amino acids, respectively. The trpB and trpA genes had conventional ribosome-binding sequences and overlapped with each other by one nucleotide, suggesting that these two genes are translationally coupled. 115 nucleotide upstream the trpB start codon, tjere was an incomplete open reading frame of the 3’-end of the trpC(F). The amino acid sequences of trpB, trpA and trpC(F) of V. metschnikovii RH530 had identities of 64.2%, 82.4% and 73.7% respectively, for those of V. parahaemolyticus; 58.7%, 72.3% and 54.9%, respectively, for Salmonella typhimurium; and 42.6%. 54.1% and 12.5%, respectively, for brevibacterium lactofermentum. The genetic organization of these genes, especially in the noncoding region between trpC(F) and trpB, was distinct from that of Enterobacteriaceae.

  • PDF

Cloning and Sequencing of the Gene Involved in Morphological Change of Zoogloea ramigera 115SLR

  • Lee, Sam-Pin;Kim, Tae-Rahk;Sinskey, Anthony-John
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Plasmid pLEX3 isolated from the recombinant cosmid library of Zoogloea ramigera 115 was found to be responsible for the restoration of the rugose colony phenotype. To confirm the essential region responsible for the complementation, subclones were constructed from plasmid pLEX3 and transformed into mutant strain Z. ramigera 115SLR. The recombinant plasmids pLEX10 and pLEX11 were shown to complement the slime-forming property of Z. ramigera 115SLR. In a compositional analysis of the exopolysaccharides from Z. ramigera 115, Z. ramigera 115SLR, and Z. ramigera 115SLR harboring plasmid pLEX11, the exopolysaccharides showed a similar composition with glucose, galactose, and side chain groups. The complete nucleotide sequence of the 3.25kb genocim DNA insert in plasmid pLEX11 was determined and its analysis identified two open reading frames which could encode two proteins. The gene products derived form the two open reading frames were confirmed by and in vivo transcription using a T7-RNA polymerase. The ORF1 produced a 30 kDa protein, whereas the ORF2 was found responsible for the complementation of the morphological mutation and produced a 14 kDa protein. An in vivo gene expression of plasmid pTEX10 showed another open reading frame encoding a 50 kDa protein. The gene products form ORF1 and ORF2 are regarded as novel proteins which do not show any homology with other proteins.

  • PDF

Action mechanism of upstream open reading frame from S-adenosylmethionine decarboxylase gene as a in vivo translational inhibitor (S-Adenosylmethionine decarboxylase 유전자의 upstream open reading frame이 in vivo에서 translational inhibitor 로서의 작용 기작)

  • Choi, Yu-Jin;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 2011
  • S-Adenosylmethionine decarboxylase (SAMDC; EC 4.1.4.50), a key enzyme for polyamines biosynthesis, was tightly regulated for homeostatic levels. Carnation SAMDC gene (CSDC9) has an small upstream open reading frame (uORF) of 54 amino acids in 5'-leader sequence. To explore the functional mechanism of uORFs in controlling translation, we used a GUS reporter gene driven with the 35S promoter and uORF region of SAMDC gene for making transgenic tobacco plants. In our experiment, there were a translational inhibition of its downstream GUS ORF by SAMDC uORF sequence or SAMDC uORF protein. Expecially, translational inhibition was most effective in point-mutated construct, in which the start codon was changed. Therefore, this results suggested the ribosomal stalling might be involved in this translational inhibitory process. The frame shift in amino acid sequence of SAMDC uORF with start codon and stop codon resulted in a moderate increasing in GUS activity, suggesting the native amino acid sequence was important for a function as a translational inhibitor. Also, we showed that the production of GUS protein was significantly inhibited in the presence of the small uORF using histochemical analysis of GUS expression in seedlings and tobacco flowers. Importantly, the small uORF sequence induced a real peptide of 5.7 kDa, which was provided the presence of SAMDC uORF peptide band using an in vitro transcription/translation system. The peptide product of uORF might interact with other components of translational machinery as well as polyamines, which was resulted from that polyamine treatment was inhibited GUS protein band in SDS-PAGE experiment.

Genetic Structure of the phnM Gene Encoding Plant-Type Ferredoxin from Pseudomonas sp. strain DJ77 (Pseudomonas sp. strain DJ77에서 Plant-Type의 Ferredoxin을 암호화하는 phnM 유전자의 구조)

  • Kim, Sungje;Kim, Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.115-119
    • /
    • 1998
  • We cloned the 4.8 kb BglII fragment containing genes downstream pHENX7 from Pseudomonas sp. strain DJ77. The restriction map of the resultant clone, recombinant plasmid pYCS500, was determined. Sequencing analysis of the 465 bp HindIII-ClaI fragment revealed an open reading frame of 282 bp that was then designated phnM. The deduced polypeptide is 93 amino acid residues long with a $M_r$ of 10,008. The PhnM has 37.3-53.9% identity with plant-type ferredoxin proteins such as NahT, XylT, DmpQ, AtdS, PhlG, PhhQ and TbuW and contains the motif similar to well-conserved functional domains of those proteins.

  • PDF

Expression of Bombyx mori Nucleopolyhedrovirus ORF4 under the Control of BaculoviruS Ie1 Promoter by a Novel Bac-to-Bac/BmNPV Baculovirus Expression System

  • Su, Wujie;Wu, Yan;Wu, Huiling;Wang, Wenbing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • Open reading frame 4 of Bombyx mori nucleopolyhedrovirus (BmNPV), designated as Bm4, is a gene whose function is completely unknown. With the recently developed BmNPV bacmid and a modified pFastBac1 whose polyhedrin promoter was replaced with ie1 promoter, a recombinant bacmid expressing Bm4-EGFP fusion protein under the control of ie1 promoter in BmN cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced efficiently with other promoters to direct the expression of foreign gene in BmN cells by using Bac-to-Bac/BmNPV baculovirus expression system but also laid the foundation for rescue experiment of Bm4 deletion mutant due to the ability of ie1 promoter to direct gene expression throughout the infection cycle.

Nucleotide Sequences of nodD and nodA from Bradyrhizobium sp. SNU001 (Bradyrhizobium sp. SNU001의 nodD와 nodA의 염기서열)

  • 나영순;심웅섭;안정선
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.189-196
    • /
    • 1993
  • Nucleotide sequences of nodD and nodA from Bradyrhizobium sp. SNUOOI were determined. The open reading frame (ORF) of nodD was 942 bp in length and encoded 314 amino acids. while ORF of nodA, sequence of which is the first one among legume symbionts Bradyrhizobium, was 630 bp and encoded 210 amino acids. The nucleotide sequence of nodD showed 99.4% homology with nodDI of B. japonicum USDAllO. while that of nodA showed 81.5% with B. sp. (Parasponial. At the 5' of nodYAB operon and nodD, consensus nod box sequences composed of 9 bp unit repeated four times and two times respectively were found. Also an A.T-rich sequence was found at 5' of nodD.

  • PDF

Cloning and Characterization of the Catalytic Subunit of Human Histone Acetyltransferase, Hat1

  • Chung, Hyo-Young;Suh, Na-Young;Yoon, Jong-Bok
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.484-491
    • /
    • 1998
  • Acetylation of lysine residues within the aminoterminal domains of the core histones plays a critical role in chromatin assemhly as well as in regulation of gene expression. To study the biochemical function of histone acetylation, we have cloned a cDNA encoding the catalytic subunit of human histone acetyltransferase, Hat1. Analysis of the predicted amino acid sequence of human Hat1 revealed an open reading frame of 419 amino acids with a calculated molecular mass of 49.5 kDa and an isoelectric point of 5.5. The amino acid sequence of human Hat1 is homologous to those of known and putative Hat1 proteins from various species throughout the entire open reading frame. The recombinant human Hat1 protein expressed in bacteria possesses histone H4 acetyltransferase activity in vitro. Both RbAp46 and RbAp48, which participate in various processes of histone metabolism, enhance the histone acetyltransferase activity of the recombinant human Hat1, indicating that they are both able to functionally interact with the human Hat1 in vitro.

  • PDF