• 제목/요약/키워드: Open Loop

검색결과 848건 처리시간 0.021초

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

  • Xu, Huai-Bing;Zhang, Chun-Wei;Li, Hui;Tan, Ping;Ou, Jin-Ping;Zhou, Fu-Lin
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.281-303
    • /
    • 2014
  • In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

탑재비행시험 영상을 적용한 통합비행 시뮬레이션 기법 연구 (Study on Integrated-Flight Simulation Method Using CFT Imagery)

  • 정동길;윤효석;박진현
    • 한국시뮬레이션학회논문지
    • /
    • 제27권1호
    • /
    • pp.111-117
    • /
    • 2018
  • 영상탐색기가 적용된 유도무기체계의 경우 영상 추적 성능이 체계 성능에 큰 영향을 미치기 때문에 유도탄 비행 중 강인한 영상 추적 성능을 확보하는 것이 필수적이다. 유도탄의 실사격 비행시험이 실제 영상 추적 성능을 확인하기 위한 가장 확실한 방법이나, 실사격 시험만으로 영상 추적기법을 실험 및 수정/보완할 경우 매우 큰 비용 손실이 발생하게 된다. 따라서 영상탐색기를 유도탄 비행 궤적을 모의할 수 있는 비행체에 탑재 후 추적 성능을 시험하는 탑재비행시험(CFT; Captive Flight Test)을 수행하게 된다. 하지만 탐색기를 탑재하는 항공기가 유도탄의 완벽한 거동을 모의하는 것은 불가능하기 때문에 탑재 비행시험만으로 체계 성능을 확인할 수는 없다. 본 논문에서는 기존 영상추적기법 단독 성능 확인에만 한정되어 있던 탑재비행시험 영상을 통합비행 시뮬레이션에 적용하여 체계 성능 확인이 가능하도록 한 기법 연구 결과에 대하여 기술하였다. 이 연구는 탑재비행시험 영상의 활용도를 증대시킬 뿐만 아니라, 기존 합성영상 기반의 통합비행 시뮬레이션 기법의 사실성을 보완할 수 있어 다양한 측면에서 체계 성능 검증을 가능하게 하였다.

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

교육용 소형 SMT 플랫폼 설계에 관한 연구 (A Study on the Design of Small SMT Platform for Education)

  • 박세준
    • Journal of Platform Technology
    • /
    • 제8권1호
    • /
    • pp.24-32
    • /
    • 2020
  • 본 논문은 SMT라인의 핵심 기술인 칩마운터의 보급을 위해 교육연구용이나 샘플제작을 목적으로 사용이 가능한 3D 프린터 기술기반의 칩마운터를 설계하고 제작하였다. 저가형 구동부 설계를 위해 오픈루프제어가 가능한 스텝모터를 사용하였다. 스텝모터 사용으로 발생하는 모터의 진동, 탈조 등의 특성상 단점은 마이크로스텝제어 방법을 이용하여 보완하였다. 칩마운터 실험은 제작한 소형 칩마운터에 거버파일을 생성하고 실제 크기로 프린트하여 샘플보드 제작과 동일한 방법으로 HASL 처리되어 있는 PCB에 솔더크림을 프린팅한 후 부품을 실장하여 여러 번 반복해서 수행하였다. 실험결과 2012 미소부품과 달리 보정이 필요한 SOIC, TQFP 등의 부품은 부품 실장 시간이 2배정도 길었지만 비교적 정확히 실장되는 것을 확인할 수 있었다. 또한, 초기 위치에 대한 오차를 총 10회에 반복하여 측정한 결과 약 0.110mm의 비교적 적은 오차가 발생함을 확인할 수 있었다.

  • PDF

범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구 (On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads)

  • 이성진;류근;정진희;류솔지
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

절대안정도를 보장하는 최적 PID 제어기 설계에 관한 연구 (A Study on Optimal PID Controller Design Ensure the Absolute Stability)

  • 조준호
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.124-129
    • /
    • 2021
  • 본 논문에서는 절대 안정도를 보장하는 최적의 제어기 설계에 대해 제안하였다. 논문의 적용 순서는 지연시간의 포함여부를 판단하고, 지연시간이 포함되었을 경우 Pade 근사법을 통해서 지연시간을 근사화 한다. 그 다음 공정모델과 제어기 전달함수에 대한 개루프 전달함수를 구하며, Routh-Hurwitz 판별법에 의해서 절대 안정도 구간을 계산한다. 마지막 단계에서는 앞 단계에서 구한 구간을 활용하여 유전자 알고리즘으로 최적의 PID 제어파라미터 값을 구한다. 그 결과 제안 된 방법은 안정성이 보장되며, 최적의 제어기를 설계하여 기존의 방법보다 성능 지표에서 우월함을 확인하였다. 향후 지연시간에 대한 보상방법이 연구된다면 더욱 좋은 성능지표를 얻을 것으로 판단된다.

네트워크 배전계통용 통신기반 보호협조에 관한 연구 (A study of communication-based protection coordination for networked distribution system)

  • 김우현;채우규;황성욱;이학주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.43-48
    • /
    • 2022
  • Although the distribution system has been structured as complicated as a mesh in the past, the connection points for each line are always kept open, so that it is operated as a radial distribution system (RDS). For RDS, the line utilization rate is determined according to the maximum load on the line, and the utilization rate is usually kept low. In addition, when a fault occurs in the RDS, a power outage of about 3 to 5 minutes occurs until the fault section is separated, and the healthy section is transferred to another line. To improve the disadvantages of the RDS, research on the construction of a networked distribution system (NDS) that linking multiple lines is in progress. Compared to the RDS, the NDS has advantages such as increased facility utilization, load leveling, self-healing, increased capacity connected to distributed generator, and resolution of terminal voltage drop. However, when a fault occurs in the network distribution system, fault current can flow in from all connected lines, and the direction of fault current varies depending on the fault point, so a high-precision fault current direction determination method and high-speed communication are required. Therefore, in this paper, we propose an accurate fault current direction determination method by comparing the peak value polarity of the fault current in the event of a fault, and a communication-based protection coordination method using this method.

지상변압기의 내부 보호장비 작동을 위한 MCA 보호협조에 대한 연구 (A study on Protective Coordination of MCA for Performing of the Pad Mounted Transformer's inside Protective Device)

  • 현승윤;김창환
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.5-7
    • /
    • 2022
  • KEPCO's plan is undergoing a trial operation to replace the open-loop section with ring main units configuration where underground distribution lines are installed, by linking the multi-way circuit breakers auto (MCA) on the power side of each pad-mounted transformer. However, ring main units application mentioned above may cause the ripple effects, when implementing the configuration without a study of protection coordination. Because ring main units with classical pre-set protection devices contribution in fault condition didn't consider yet. For the reliable ring main units operation, it is necessary to resolve several protection issues such as the protection coordination with substation side, prevention of the transformer inrush current. These issues can radically deteriorate the distribution system reliability Hence, it is essential to design proper protection coordination to reduce these types of problems. This paper presents a scheme of ring main units' configuration and MCA's settings of time-current curves to preserve the performance of protection coordination among the switchgears considering constraints, e.g. prevention of the ripple effects (on the branch section when a transformer failure occurs and the mainline when a branch line failure occurs). It was confirmed that the propagation of the failure for each interrupter segment could be minimized by applying the proposed TCC and the interrupter settings for the MCAs (branch, transformer). Further, it was verified that the undetected area of the distribution automation system (DAS) could be supplemented by having the MCA configurated ring main units operate first, instead of the internal protection equipment in the transformer such as the fuse, STP when a transformer failure occurs.

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • 제7권1호
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.