• Title/Summary/Keyword: Open Data Framework

Search Result 259, Processing Time 0.026 seconds

Learning Framework based on Public Open Data for Workplace Etiquette Education (직장예절교육용 공공개방데이터를 활용한 학습 프레임워크)

  • Kim, Yuri
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.133-146
    • /
    • 2018
  • This study develops an Education framework for users who need public open data for workplace etiquette education in a timely manner by mobile application. It facilitates utilizing efficiently Workplace etiquette contents that scattered in various platforms such as blogs, Youtube and web-sites run by private education agencies. Furthermore, it makes Public open data for workplace etiquette through gathering 'metadata', which is a comprehensive source of workplace etiquette. Accordingly, framework changes recognition about necessity of workplace etiquette education positively and suggests method that can promote effective workplace etiquette education. If the system in the study can provide public open data of workplace etiquette education, many young job applicants and workers will have a proper perception on it and sound workplace etiquette culture will be settled in the companies. Public data has been rising as a vital national strategic asset these days. Hopefully the public data will pave a way to discover the blue ocean in the market and open up a new type of businesses.

An Evaluation Study on Artificial Intelligence Data Validation Methods and Open-source Frameworks (인공지능 데이터 품질검증 기술 및 오픈소스 프레임워크 분석 연구)

  • Yun, Changhee;Shin, Hokyung;Choo, Seung-Yeon;Kim, Jaeil
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1403-1413
    • /
    • 2021
  • In this paper, we investigate automated data validation techniques for artificial intelligence training, and also disclose open-source frameworks, such as Google's TensorFlow Data Validation (TFDV), that support automated data validation in the AI model development process. We also introduce an experimental study using public data sets to demonstrate the effectiveness of the open-source data validation framework. In particular, we presents experimental results of the data validation functions for schema testing and discuss the limitations of the current open-source frameworks for semantic data. Last, we introduce the latest studies for the semantic data validation using machine learning techniques.

Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL (OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크)

  • Kim, Daehee;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Reconsideration of Research Framework for RRM in the Perspective of Linked Open Data (차세대 학술연구 데이터 공유 활성화를 위한 연구기록의 구조적 요건에 대한 연구)

  • Yoo, Sarah
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.101-120
    • /
    • 2019
  • The cognition of Research Record Management (RRM) scholars about research framework is important as a pre-condition for future Linked Open Data (LOD). Researchers will be directly engaged to the research data-process with Cloud Computing Data-Infra, which is considered as a Nation-wide R&D Data Projects. The purpose of this paper is to diagnose researcher's cognition of research framework and to provide some guidance of finding a new meaning of the structural requirements of resarch record.

A Socio-Technical Model for Open Government Data Research

  • Cruza, Ruth Angelie B.;Lee, Hong Joo
    • Asia pacific journal of information systems
    • /
    • v.26 no.3
    • /
    • pp.339-366
    • /
    • 2016
  • National and local governments around the world have been allowing access to administrative data to increase transparency, motivate civic engagement of citizens, and improve collaboration between the public and the government. This study reviews and classifies existing literature on open government data (OGD). To create a structure to organize the existing studies, the researchers devised a framework based on socio-technical theory and summarized the significance of studies along four major points: (1) readiness, (2) implementation, (3) emerging effects, and (4) actors of open data. Studies in OGD have been growing steadily in the recent years because of the rapid development of adoptable technologies that have enabled easier access to government data. Nonetheless, an examination of existing research not only shows a disparity in research and development of OGD across countries in the Open Government partnership program but also reveals pertinent issues that have arisen in different stages of the OGD initiative. The growing number of studies and expanding body of knowledge show the importance of organizing existing literature. This step is timely and significant to map out the current breadth and depth of OGD research. According to existing research, current open governments fall short in encouraging citizen participation and collaborations among citizens and the government. This study pointed out how studies on OGD actors might be the reason as well as the solution to existing findings. This paper aims to provide a framework for organizing OGD studies, present the status of OGD research, and provide recommendations on current gaps that must be addressed.

Analyzing RDF Data in Linked Open Data Cloud using Formal Concept Analysis

  • Hwang, Suk-Hyung;Cho, Dong-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.57-68
    • /
    • 2017
  • The Linked Open Data(LOD) cloud is quickly becoming one of the largest collections of interlinked datasets and the de facto standard for publishing, sharing and connecting pieces of data on the Web. Data publishers from diverse domains publish their data using Resource Description Framework(RDF) data model and provide SPARQL endpoints to enable querying their data, which enables creating a global, distributed and interconnected dataspace on the LOD cloud. Although it is possible to extract structured data as query results by using SPARQL, users have very poor in analysis and visualization of RDF data from SPARQL query results. Therefore, to tackle this issue, based on Formal Concept Analysis, we propose a novel approach for analyzing and visualizing useful information from the LOD cloud. The RDF data analysis and visualization technique proposed in this paper can be utilized in the field of semantic web data mining by extracting and analyzing the information and knowledge inherent in LOD and supporting classification and visualization.

Parallel LDPC Decoder for CMMB on CPU and GPU Using OpenCL (OpenCL을 활용한 CPU와 GPU 에서의 CMMB LDPC 복호기 병렬화)

  • Park, Joo-Yul;Hong, Jung-Hyun;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.325-334
    • /
    • 2016
  • Recently, Open Computing Language (OpenCL) has been proposed to provide a framework that supports heterogeneous computing platforms. By using an OpenCL framework, digital communication systems can support various protocols in a unified computing environment to achieve both high portability and high performance. This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes for China Multimedia Mobile Broadcasting (CMMB) on a heterogeneous platform. Each step of LDPC decoding has different parallelization characteristics. In this paper, steps suitable for task-level parallelization are executed on the CPU, and steps suitable for data-level parallelization are processed by the GPU. To improve the performance of the proposed OpenCL kernels for LDPC decoding operations, explicit thread scheduling, loop-unrolling, and effective data transfer techniques are applied. The proposed LDPC decoder achieves high performance by using heterogeneous multi-core processors on a unified computing framework.

Application Of Open Data Framework For Real-Time Data Processing (실시간 데이터 처리를 위한 개방형 데이터 프레임워크 적용 방안)

  • Park, Sun-ho;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1179-1187
    • /
    • 2019
  • In today's technology environment, most big data-based applications and solutions are based on real-time processing of streaming data. Real-time processing and analysis of big data streams plays an important role in the development of big data-based applications and solutions. In particular, in the maritime data processing environment, the necessity of developing a technology capable of rapidly processing and analyzing a large amount of real-time data due to the explosion of data is accelerating. Therefore, this paper analyzes the characteristics of NiFi, Kafka, and Druid as suitable open source among various open data technologies for processing big data, and provides the latest information on external linkage necessary for maritime service analysis in Korean e-Navigation service. To this end, we will lay the foundation for applying open data framework technology for real-time data processing.

An Analysis of Urban Open Space with Geographic Information Systems - A Case Study of Ansan City, Korea - (지리정보체계를 이용한 안산시의 오픈스페이스 분석)

  • 서동조;박종화
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.89-113
    • /
    • 1990
  • The purpose of this study is to develop means to apply GIS and remote sensing technology to the analysis of Korean urban open spaces. To achieve this objective, a framework of analysis of urban open spaces was developed, and then the framework was applied for the evaluation of the potential and suitability of open spaces of Ansan City, which is a new town developed to accomodate industries relocation from Seoul, Korea, mainly due to their pollution problems. The software used in this study are IDRISI, a grid-based GIS, and KMIPS, a remote sensing analysis system. Both packages are based on IBM PC/AT computers with Microsoft DOS. Landsat MSS and TM data were used for the land use classification, land use change detection, and analysis of transformed vegetation indices. The size of the geographic data base is 110 rows and 150 columns with the spatial resolution of 100m$\times$100m. The framework of analysis includes both quanititative and qualitative analysis of open spaces. The quantitative analysis includes size and distribution of open spaces, urban develpment of open spaces, and the degree of vegree of vegetation removal of the study area. The qualitative analysis includes evaluative criteria for primary productivity of land, park use potential, major visual resources, and urban environmental control. The findings of this study can be summarized as follows. First, the size of builtup areas increased 18.73km$^2$, while the size of forest land decreased 10.86km$^2$ during last ten years. Agricultural lands maintained its size, but shifted toward outside of the city into forest. Second, the potential of open spaces for park use is limited mainly due to their lack of accessibility and connectivity among open spaces, in spite of ample acreage and good site conditions. Third, major landscape elements and historic sites should be connected to the open space system of the city by new accesses and buffers.