• Title/Summary/Keyword: Open Cycle

Search Result 399, Processing Time 0.022 seconds

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Performance Analysis of an Air-Cycle Refrigeration System (공기사이클 냉동시스템의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.671-678
    • /
    • 2012
  • The objective of this study is to analyze theoretically the performance of an open air-cycle refrigeration system in which environmental concerns increase. The pressure ratio of the external compressor and efficiencies of the components that compose of the system are selected as important parameters. As the pressure ratio of the external compressor increases, the pressure ratio of the ACM compressor is determined high, the refrigerating temperature and capacity increase, the COP decreases, and the total entropy production rate increases. The effect of heat exchanger effectiveness and turbine efficiency on the performance are greater than that of the ACM compressor efficiency. Also the performance of the air-cycle refrigeration system with two heat exchangers has been enhanced like high COP and low total entropy production rate, compared to the system with one heat exchanger.

Various kinds of data and reliability assessment (여러 가지 데이터와 신뢰성 평가)

  • Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.303-317
    • /
    • 2009
  • There are a lot of different data in a company. Some of the data can be modified to produce valuable information on reliability. In this study different types of data that can be obtained in a company are reviewed. Reliability related data that can be taken throughout the life cycle of a product are also reviewed. Developing a method of gathering all of the pertinent data from the various sources and databases and pulling them into one central location is explained.

  • PDF

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

A Study on Stock Market Cycle and Investment Strategies (주식시장국면 예측과 투자전략에 대한 연구)

  • Kyoung-Woo Sohn;Ji-Yeong Chung
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.45-59
    • /
    • 2022
  • Purpose - This study investigates the performance of investment strategies incorporating estimated stock market cycle based on a lead-lag relationship between business cycle and stock market cycle, thereby deriving empirical implications on risk management. Design/methodology/approach - The data period ranges from June 1953 to September 2022 and de-trended short rate, term spread, credit spread, stock market volatility are considered as major input variables to estimate business cycle and stock market cycle by applying probit model. Based on the estimated stock market cycle, two types of strategies are constructed and their performance relative to the benchmark is empirically examined. Findings Two types of strategies based on stock market cycle are considered: The first strategy is to long(short) on stocks when stock market stage is expected to be an expansion(a recession), and the second one is to long on stocks(bonds) when expecting an expansion(a recession). The empirical results show that the strategies based on stock market cycle outperforms a simple buy and hold strategy in both in-sample and out-of-sample investigation. Also the out-of-sample evidence suggests that the second strategy which is in line with asset allocation is more profitable than the first one. Research implications or Originality The strategies considered in this study are based on the estimated stock market cycle which only depends on a few easily available financial variables, thereby making easier to establish such a strategy. It implies that investors enhance investment performance by constructing a relatively simple trading strategies if they set their position on stocks or choose which asset class to buy conditioning on stock market cycle.

Estimation Methods for Turbine Nozzle Throat Area Reduction of A LOx/Kerosene Gas Generator Cycle Liquid Propellant Rocket Engine (액체산소/케로신 가스발생기 사이클 액체로켓엔진 터빈 노즐목 면적 변화 추정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.101-106
    • /
    • 2019
  • Carbon deposition on the turbine nozzle throat of a LOx/kerosene gas generator cycle(open cycle) engine causes performance reduction of the engine. Estimation methods for a turbine nozzle throat area are proposed. The discharge coefficient of the turbine nozzle was estimated with the turbine gas properties such as gas constant, specific heat ratio, and temperatures. The pressure ratio and temperature ratio of the turbine nozzle throat, was utilized to estimate the discharge coefficient also. Estimated discharge coefficient of turbine nozzle throat of KSLV-II 1st stage engine shows the carbon deposition effects on the turbine nozzle throat of a LOx/kerosene open cycle engine.

The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law (오토 사이클 기관의 열역학 제 2법칙적 성능 해석)

  • 김성수;노승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

Data Life Cycle Proposal for Research Data Management (연구 데이터 관리를 위한 데이터 라이프 사이클 제안)

  • Kim, Juseop;Kim, Suntae;Jeon, Yerin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.4
    • /
    • pp.309-340
    • /
    • 2019
  • Although overseas countries have already developed data life cycle for the preservation and curation of data since the 1990s, the research in Korea has been very insufficient. In this study, we analyzed the data life cycles developed in DCC, ICPSR, IWGDD, DataONE, USGS and UKDA to propose data life cycle for efficient management of research data. As a result of the analysis, the common components derived are 'Plan', 'Create & Collect', 'Process', 'Preserve', 'Dispose', 'Access & Use', 'Describe', 'Assure' and 'Backup & Secure'. In addition, the nine components were subdivided into stages to describe the details to be carried out at that stage. It is expected that the content of this study will be applicable in the future development of data life cycle for research data management in Korea.

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

Designing Software Architecture for Reusing Open Source Software (오픈 소스 소프트웨어 재사용을 위한 소프트웨어 아키텍처 설계)

  • Choi, Yongseok;Hong, Jang-Eui
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.67-76
    • /
    • 2017
  • Along with shortening the life cycle of software utilization and supporting various types of user functions, the importance of software architecture development has been emphasized recently. If a software architecture is developed flexibly and reliably for expansion to support new functionality, it can quickly cope with new market demands. This paper proposes an architecture design method based on design recovery of open source software to reuse the software in the development of sustainable software system. When using open source software to develop a software system based on software architecture, we can develop a software system rapidly and also can improve the reliability of the system because we use the already proven open source software in the development.