• 제목/요약/키워드: Open Cavity Flow

Search Result 55, Processing Time 0.023 seconds

Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows (저아음속 유동에 놓여진 개방형 공동의 공력소음 특성)

  • Koh, Sung-Ryong;Moon, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

DETACHED EDDY SIMULATION OF AN INCOMPRESSIBLE FLOW PAST AN OPEN CAVITY (DES 방법을 이용한 비압축성 열린 공동 유동의 수치적 모사)

  • Chang K.S.;Park S.O.;Kwon O.J.;Constantinescu G.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.48-54
    • /
    • 2005
  • Three-dimensional incompressible flow past an open cavity in a channel is investigated using Detached Eddy Simulation(DES). The length to depth ratio of the cavity is 2 and the Reynolds number defined with the cavity depth is 3,360. The DES methods are based on the Menter's SST model. In the present work, two types of inflow conditions are used: one is RANS profile, the other is LES inflow from another Large Eddy Simulation(LES) of fully developed channel flow. The results are compared with experimental data and LES results in terms of the mean statistics, temporal physics and scalar transport phenomenon of the flow.

Detached Eddy Simulation of an incompressible flow past an open cavity (DES 방법을 이용한 비압축성 열린 공동 유동의 수치적 모사)

  • Chang K.S.;Park S.O.;Kwon O.J.;Constantinescu G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.148-152
    • /
    • 2005
  • The three-dimensional incompressible flow past an open cavity in a channel is investigated using Detached Eddy Simulation(DES). The length to depth ratio of the cavity is 2 and the Reynolds number defined with the cavity depth is 3,360. The DES methods are based on the Mentor's SST model. In the present work, two types of inflow conditions are used; one is RANS profile, the other is LES inflow from another Large Eddy Simulation(LES) of fully developed channel flow. The results are compared with experimental data and LES results in terms of the mean statistics and temporal physics of the flow.

  • PDF

Experiments for the Acoustic Source Localization in 2D Cavity Flow (2차원 공동 유동에서의 소음원 위치 판별을 위한 실험적 연구)

  • Lee, Jaehyung;Park, Kyu-Chol;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone array. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in an anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures and their spectral contents are affected by the cavity parameter L/D.

Acoustic Source Localization in 2D Cavity Flow using a Phased Microphone Array (마이크로폰 어레이를 이용한 2차원 공동 유동에 대한 소음원 규명)

  • 이재형;최종수;박규철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.701-708
    • /
    • 2003
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone way. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures. It is also shown that their spectral contents are affected by the cavity parameter L/D.

  • PDF

Unsteady Flow in a Cavity Induced by An Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동특성)

  • 서용권;박준관;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.105-116
    • /
    • 1996
  • In this paper, we report the experimental results for the flow pattern and the material transport around a cavity subject to a sinusoidal external flow at the far region to ward the open side of the cavity. A tilting mechanism is used to generate a oscillatory flow inside a shallow rectangular container having a cavity at one side. The surface flow visualization is performed to obtain the unsteady behavior of vortices generated at two edges situated at the entrance of the cavity. It was found that at the period 4.5 sec., the behavior of the vortices is asymmetric, and there exists a steady residual flow in the cavity. The bottom flow patterns are also visualized. There are two regions outside of the cavity where the bottom fluid particles concentrate. The material transport in this flow model is very peculiar; fluid particles in the cavity flows outward through the passage along the walls starting from the edges, and particles in the outer region approach the cavity from the central region.

  • PDF

LARGE EDDY SIMULATION OF THE COMPRESSIBLE FLOW OVER A OPEN CAVITY (큰에디모사기법을 이용한 공동 주위의 압축성유동 해석)

  • 오건제
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • Large eddy simulation is used to investigate the compressible flow over a open cavity, The sub-grid scale stresses are modeled using the dynamic model. The compressible Navier-Stokes equations are solved with the sixth order accurate compact finite difference scheme in the space and the 4th order Runge-Kutta scheme in the time. The results show a typical flow pattern of the shear layer mode of oscillation over the cavity. The votical disturbances, the roll-up of vorticity, and impingement and scattering of vorticity at the downstream cavity edge can be seen in the shear layer. Predicted acoustic resonant frequency is in good agreement with that of the empirical formula. The mean flow streamlines are nearly horizontal along the mouth of the cavity. The pressure has its minimum value in the vortex core inside the cavity.

LARGE EDDY SIMULATION OF FLOW AND MASS EXCHANGE PROCESSES BETWEEN A CHANNEL AND AN OPEN CAVITY (LES를 이용한 열린 공동 유동과 공동 내 물질 확산의 수치적 모사)

  • Chang K.S.;Park S.O.;Constantinescu G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.239-243
    • /
    • 2005
  • Fully three-dimensional Large Eddy Simulation calculations of the flow past 2D cavity are conducted to study the purging of neutrally buoyant or dense miscible contaminants introduced instantaneously inside the cavity. The length to depth ratio(L/D) is 2 and Reynolds number based on the depth is 3,360. Fully developed turbulent inflow are fed at the inlet from precursor simulation of channel flow. Mean flow pattern and unsteady features are investigated based on the experimental data of Pereira and Sousa. From the study of mass exchange processes, it is found that the mechanism of removal of the contaminant is very different between the non-buoyant and buoyant cases. In the buoyant case, internal wave motion which interacts with a strong cavity vortex is dominant in the ejection mechanism of the contaminants.

  • PDF

An investigation of pressure oscillation in supersonic cavity flow (초음속 Cavity 내에서의 압력 진동 특성 연구)

  • Kim Hyungjun;Kim Sehoon;Kwon Sejin;Park Kunhong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.743-746
    • /
    • 2002
  • Experimental investigation of the flow field of supersonic cavity is described. In this research, supersonic cavity is used in chemical laser system. For efficient laser, downstream flow after cavity need to be uniform and clear for pressure recovery system. In previous research, it's known that there's oscillation In cavity and is due to Mach number and L/D ratio. A strong recompression occurs at the after wall and the flow is visibly unsteady. Cavity flow in this research is of the open type, that is, length-to-depth ratio $L/D<10\;at\;M\;=\;3$. Experiment is done with pressure measurement by piezo-type sensor and visualization by Schlirern method. The time-dependent experimental result is compared with computation.

  • PDF