• 제목/요약/키워드: Oomycete

검색결과 44건 처리시간 0.021초

Analysis of genes expressed during pepper-Phytophthora capsici interaction

  • Park, Woobong;Jeon, Myoung-Seung;Kim, Yean-Hee;Park, Eun-Woo;Park, Doil
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.86-86
    • /
    • 2003
  • Phytophthora capsici is a pathogen on several economically important crops including pepper. In pepper growing areas in Korea, Phytophthora blight caused by p. capsici has been considered as the most serious problem in pepper production. The Oomycete attacks the roots, stems, leaves and fruits of the plant. To understand the molecular mechanisms involved in the disease development, the genes expressed doting pepper p. capsici interaction were explored by analyzing expressed sequence tags (ESTs). A complementary DNA (cDNA) library was constructed from total RNA extracted from pepper leaves challenged with p. capsici for 3 days resulting in early stage of symptom development. The comprehensive analysis on the single pass sequencing of over 4000 randomly selected cDNA clones with contig assembly, unique gene extraction, sequence comparison, and functional categorizing will be presented with an emphasis on the genes involved in plant defense and pathogenicity during disease development of the pepper Phytophthora blight.

  • PDF

Antimicrobial Activity of Thinned Strawberry Fruits at Different Maturation Stages

  • Kim, Dong Sub;Na, Haeyoung;Song, Jeong Hwa;Kwack, Yurina;Kim, Sung Kyeom;Chun, Changhoo
    • 원예과학기술지
    • /
    • 제30권6호
    • /
    • pp.769-775
    • /
    • 2012
  • Among the phenolic compounds that is generally present in strawberry fruits, five simple phenolics, three flavonoids, and a stilbene were tested for their antimicrobial activity against seven fungi and one oomycete. trans-Cinnamic acid showed strong antimicrobial activity, and the antimicrobial effect of the simple phenolics decreased with an increase in the number of hydroxyl groups. Phytophthora capsici was the most susceptible to the phenolic compounds tested in this study. trans-Cinnamic acid, p-hydroxybenzoic acid, and kaempferol were mainly detected in 'Seolhyang' strawberry fruits, and the total phenolic contents of the fruits decreased during their development. Extracts of the green (1-10% red color) and red (above 90% red color) strawberry fruits reduced the mycelial growth and zoospore germination rate of P. capsici, and the extract of red strawberry fruit showed strong antimicrobial activity against the zoospore germination of P. capsici. These results indicate that strawberry fruits contain antimicrobial phenolic compounds and that strawberry fruit extract can be used as a natural fungistat.

Saprolegnia ferax에 의한$\beta$-amylase의 생산 및 특성

  • 배석;조남철;전순배
    • 한국미생물·생명공학회지
    • /
    • 제25권2호
    • /
    • pp.109-114
    • /
    • 1997
  • The Oomycete Saprolegnia ferax produces an extracellular $\beta$-amylase, Maximum enzyme yield was attained after 7 days of growth in YNB starch medium (pH 6.5) at 25$\circ$C. The amylase was pu- rified 24-fold by ultrafitration, HPLC DEAE column and HPLC gel filtration. The purfied enzyme was a monomeric glycoprotein with a molecular weight of about 44,000 dalton. The pH and temperature optima were 6.5 and 50$\circ$C, respectively. The enzyme was fairly stable up to 50$\circ$C and at acidic pH region (pH 4.0-7.0). The apparent Km and Vmax values of the enzyme against soluble starch were 0.77 mg/ml and 2,174 $\mu$moles/mg protein, respectively. Amino acid analysis indicated that the enzyme was enriched in alanine, glycine, leucine and acidic amino acid. Starch hydrolysis with the enzyme released maltose but not glucose, whereas maltotriose, Schardinger dextrin ($\alpha$-cyclodextrin) and pullulan were not hydrolysed by the enzyme. The enzyme was inhibited by Schardinger dextrin, p-chloromercuribenzoate(PCMB), CU$^{2+}$' and Hg$^{2+}$. Inhibition of the enzyme by PCMB could be reversed by the addition of cysteine and mercaptoethanol.

  • PDF

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Oomycetes RXLR Effectors Function as Both Activator and Suppressor of Plant Immunity

  • Oh, Sang-Keun;Kamoun, Sophien;Choi, Doil
    • The Plant Pathology Journal
    • /
    • 제26권3호
    • /
    • pp.209-215
    • /
    • 2010
  • Plant pathogenic oomycetes, such as Phytophthora spp., are the causal agent of the most devastating plant diseases. During infection, these pathogens accomplish parasitic colonization of plants by modulating host defenses through an array of disease effector proteins. These effectors are classified in two classes based on their target sites in the host plant. Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, through the haustoria that enter inside living host cell. Recent characterization of some oomycete Avr genes showed that they encode effector protein with general modular structure including N-terminal conserved RXLR-DEER motif. More detailed evidences suggest that these AVR effectors are secreted by the pathogenic oomycetes and then translocated into the host plant cell during infection. Recent findings indicated that one of the P. infestans effector, Avrblb2, specifically induces hypersensitive response (HR) in the presence of Solanum bulbocastanum late blight resistance genes Rpi-blb2. On the other hand, another secreted RXLR protein PexRD8 originated from P. infestans suppressed the HCD triggered by the elicitin INF1. In this review, we described recent progress in characterized RXLR effectors in Phytophthora spp. and their dual functions as modulators of host plant immunity.

The gene repertoire of Pythium porphyrae (Oomycota) suggests an adapted plant pathogen tackling red algae

  • Badis, Yacine;Han, Jong Won;Klochkova, Tatyana A.;Gachon, Claire M.M.;Kim, Gwang Hoon
    • ALGAE
    • /
    • 제35권2호
    • /
    • pp.133-144
    • /
    • 2020
  • Pythium porphyrae is responsible for devastating outbreaks in seaweed farms of Pyropia, the most valuable cultivated seaweed worldwide. While the genus Pythium contains many well studied pathogens, the genome of P. porphyrae has yet to be sequenced. Here we report the first available gene repertoire of P. porphyrae and a preliminary analysis of pathogenicity-related genes. Using ab initio detection strategies, similarity based and manual annotation, we found that the P. porphyrae gene repertoire is similar to classical phytopathogenic Pythium species. This includes the absence of expanded RxLR effector family and the detection of classical pathogenicity-related genes like crinklers, glycoside hydrolases, cellulose-binding elicitor lectin-like proteins and elicitins. We additionally compared this dataset to the proteomes of 8 selected Pythium species. While 34% of the predicted proteome appeared specific to P. porphyrae, we could not attribute specific enzymes to the degradation of red algal biomass. Conversely, we detected several cellulases and a cutinase conserved with plant-pathogenic Pythium species. Together with the recent report of P. porphyrae triggering disease symptoms on several plant species in lab-controlled conditions, our findings add weight to the hypothesis that P. porphyrae is a reformed plant pathogen.

Isolation and Antifungal and Antioomycete Activity of Streptomyces scabiei Strain PK-A41, the Causal Agent of Common Scab Disease

  • Han, Won-Choon;Lee, Jung-Yeop;Park, Duck-Hwan;Lim, Chun-Keun;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.115-126
    • /
    • 2004
  • The actinomycete strain PK-A41 was isolated from a soil sample from pepper fields in Ko-yang, Korea. The strain PK-A41 inhibited the mycelial growth of some plant pathogenic fungi and oomycete, Alternaria mali, Colletotrichum orbiculare, Fusarium oxysporum f.sp. lycopersici, Magnaporthe grisea, Rhizoctonia solani, and Phytophthora capsici. The presence of LL-diaminopi-melic acid in the cell wall extract and the nucleotide sequence of the 16S rDNA region of the strain PK-A41 was assigned to Streptomyces scabiei. Further morpho-logical, biochemical, and pathological analyses also confirmed the strain PK-A41 to be S. scabiei, which is pathogenic to potato tubers. The maximum antibiotic production of the strain PK-A41 was achieved when grown on the glycerol peptone broth (GPB) medium for 9 days.

Occurrence and pathogenicity of Pythium (Oomycota) on Ulva species (Chlorophyta) at different salinities

  • Herrero, Maria-Luz;Brurberg, May Bente;Ojeda, Dario I.;Roleda, Michael Y.
    • ALGAE
    • /
    • 제35권1호
    • /
    • pp.79-89
    • /
    • 2020
  • Pythium species are ubiquitous organisms known to be pathogens to terrestrial plants and marine algae. While several Pythium species (hereafter, Pythium) are described as pathogens to marine red algae, little is known about the pathogenicity of Pythium on marine green algae. A strain of a Pythium was isolated from a taxonomically unresolved filamentous Ulva collected in an intertidal area of Oslo fjord. Its pathogenicity to a euryhaline Ulva intestinalis collected in the same area was subsequently tested under salinities of 0, 15, and 30 parts per thousand (ppt). The Pythium isolate readily infected U. intestinalis and decimated the filaments at 0 ppt. Mycelium survived on U. intestinalis filaments for at least 2 weeks at 15 and 30 ppt, but the infection did not progress. Sporulation was not observed in the infected algal filaments at any salinity. Conversely, Pythium sporulated on infected grass pieces at 0, 15, and 30 ppt. High salinity retarded sporulation, but did not prevent it. Our Pythium isolate produced filamentous non-inflated sporangia. The sexual stage was never observed and phylogenetic analysis using internal transcribed spacer suggest this isolate belongs to the clade B2. We conclude that the Pythium found in the Oslo fjord was a pathogen of U. intestinalis under low salinity.

Mini-review: oomycete RXLR genes as effector-triggered immunity

  • Arif, Saima;Jang, Hyun A;Kim, Mi-Reu;Oh, Sang-Keun
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.561-573
    • /
    • 2018
  • Oomycetes are known to secrete a vast arsenal of effectors that modulate the host defense system as well as facilitate establishing a parasitic infection in plants. In recent years, tremendous progress has been made in the field of effectromics based on studies of oomycetes, especially the cytoplasmic family of RXLR effectors. Yet, the biology of the RXLR effector family is still poorly understood. There has been a consensus regarding the structure of the RXLR motif in the mycologist community. However, the function of the RXLR motif is still unclear. First, different models have suggested that the role of the RXLR motif is either in translocation to a target destination inside a host cell or in the cleavage of itself followed by secretion. Second, recent studies have suggested different functional models for the RXLR motif. According to a widely accepted model, the RXLR motif is directly involved in the translocation of effectors to target sites. In contrast, a new study has proposed that the RXLR motif is involved in secretion rather than translocation. Thus, this review is an attempt to summarize the recent advances made in the functional analysis of the N-terminal domain of RXLR effectors.

Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) Isolated from Freshwater Environments in Korea

  • Choi, Young-Joon;Lee, Seo Hee;Nguyen, Thuong T.T.;Nam, Bora;Lee, Hyang Burm
    • Mycobiology
    • /
    • 제47권2호
    • /
    • pp.135-142
    • /
    • 2019
  • Many members of the Saprolegniales (Oomycete) cause mycoses and disorders of fishes, of which Achlya and Saprolegnia are most ubiquitous genera worldwide. During a survey of the diversity of freshwater oomycetes in Korea, we collected seven isolates of Achlya, for which morphological and molecular phylogenetic analyses enabled them to identify as Achlya americana and Achlya bisexualis. In Korea, only a species of Achlya, A. prolifera, has been previously found to cause seedling rot on rice (Oryza sativa), but none of the two species have been reported yet. Importantly, A. bisexualis was isolated from a live fish, namely rice fish (Oryzias sinensis), as well as freshwater, and this is the first report of Achlya-causing mycoses on freshwater fishes in Korea. The presence of A. americana and A. bisexualis on live fish in Korea should be closely monitored, as considering the well-known broad infectivity of these species it has the potential to cause an important emerging disease on aquaculture industry.