• Title/Summary/Keyword: Oocyte degeneration

Search Result 34, Processing Time 0.015 seconds

Reproductive Cycle of the Goldeye Rockfish, Sebastes thompsoni (Teleostei: Scorpaenidae) (불볼락(Sebastes thompsoni)의 생식주기)

  • LEE Jung Sick;AN Cheul Min;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • Sexual maturation and reproductive cycle of the goldeye rockfish, Sebastes thompsoni were investigated under photomicroscopy. Samples were collected monthly in the coastal water of Samcheonpo ($34^{\circ}55'N$ ), Korea from November 1995 to October 1996, The ovary consists of several ovarian lamellae originated from ovarian outer membrane. Oogonia which are originated from the inner surface of the ovarian lamella protrude to the ovarian cavity in oocyte stage, and they ave suspended by the egg stalk. The testis is seminiferous tubule type in internal structure. Seminiferous tubule consists of many testicular cysts which contain numerous germ cells in same developmental stage. Biological minimum size of female and male were 19.5 cm and 21.5 cm in total length, respectively. Gonadosomatic index (GSI) of female was the highest (9.56) in March and the lowest (0.15) in August. GSI of male was the highest (0.25) in February and the lowest (0.04) in July. Reproductive cycle was classified into the following successive stages: in female, growing (October and November), maturation ( $December\~February$), gestation (March), parturition and recovery ($April\~June$) and resting ($July\~September$), and in male, growing ($September\~November$), maturation ( December and January), ripe and copulation ( February and March) and degeneration and resting ($April\~August$).

  • PDF

Sex Differentiation of the Gonad in Red Sea Bream, Pagrus major with Cultured Condition (양식산, 참돔 Pagrus major의 생식소 성분화)

  • 김형배
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.529-546
    • /
    • 1998
  • Gonadal part that developed by indifferentiation period for 6 months after hatching is made as gonad and fat body. These gonad are thin semi-transparant and undistinguished germ cell. Germinal epithelium is distinguished by development of gonad epithelial tissue from 7 months after hatching. Sex differentiation is begun by oogonia develoment at 8 months after hatching. Primary oocytes grow over germinal epithelium of gonadal cavity, at 9 months after hatching, gonadal cavity become ovarian cavity as they increasing. As soon as oocytes at 13 months after hatching are filled with the whole part of gonad, degeneration of oocyte is begun. And then, gonad has cavity tissue, a small number of oocyte are located in gonadal cavity. At 15 months after hatching, new primary oocyte develop and cavity of ovarian tissue in the central of ovarian cavity. Spermatogonia multiplicate and cavity tissue consist of testicular tissue. These gonad become hermaphrodite and then ditermine the sex of female and male. These results show the red sea bream is juvenile hermaphrodite and undif-ferentiated gonochoristic teleost. Male and female differentiation type of gonad is divided in undifferentiation stage, oogonia-like stage, ovary-like stage, ovary development stage, hermaphroditic testis stage, hermaphroditic ovary stage, and testis development stage. Undifferentiation stage is continued total lenth 18cm at 13 months after hatching. ovary-like stage is continued total length 11~18cm at 13 months after hatching. Ovary-like stage is continued total length 14~26cm at 10~14 months after hatching. Ovary development stage begins from total length 20cm, 14 months after hatching. At 20 months after hatching, 44 percent of total sampled individuals had ovary. Hermaphroditic ovary stage first begins total length 19~20 cm at 15 months after hatching, but it is not observed total length 28~29cm at 20months after hatching. Hermaphroditic testis stage first begins total length 21~22cm at 20months after hatching and is continued for 20months. Testis development stage first begins total length 20~21cm at 20 months after hatching, and is occupied 33 percent total length 28~29cm at 20 months. The beginning of sex differentiation more than 50 percent is from total length 16cm at 11 months after hatching. Sex determination begins total length 20cm, 14months after hatching in female and total length 20cm, 15 months after hatching in male. Sex determination more than 50 percent begins total length 23cm,, 17 months after hatching. Undifferentiated gonadal part of red sea bream consist gonad and fat body. As differentiation is going on and gonad is growing, fat body shrinks. This appearence is showed the same tendency in 3-year old red sea bream. 1.9mm larvae after hatching grow about 19mm larvae for 47 days. The relationship between the total length and body weight of larvae and juveniles in $BW=4.45{\times}10^{-6}TL^{3.4718}$ r=0.9820. Fishes in cage culture grow to maximum total length 28.4cm. The relationship between the total length and body weight of these fishes is $BW=2.36{\times}10^{-2}TL^{2.9180}$, r=0.9971. Undifferentiated gonadal part of red sea bream consist gonad and fat body. As differentiation is going on and gonad is growing, fat body shrinks.

  • PDF

Comparison of Nuclear Status and Developmental Potential between Polar Body Extruded Oocytes and Non-extruded Oocytes on in vitro Maturation and Development of Porcine Follicular Oocytes (돼지 난모세포의 체외 성숙 후 극체 방출 및 미방출란의 핵형과 배발달율)

  • Kim, H.J.;Cho, S.R.;Choe, J.Y.;Choi, S.H.;Han, M.H.;Son, D.S.;Kim, Y.G.;Lee, S.S.;Ryu, I.S.;Kim, I.C.;Kim, I.H.;Im, K.S.
    • Journal of Embryo Transfer
    • /
    • v.21 no.3
    • /
    • pp.169-175
    • /
    • 2006
  • The objective of this study was carried out to examine the polar body extrusion of in vitro matured porcine follicular oocytes as a non-invasive marker of oocyte quality to know the developmental competence in advance. The porcine oocytes matured for 48 hours were examined the polar body extrusion and some parts were stained. The examined oocytes were matured for additional $16{\sim}18$ hours and activated with 7% ethanol and cultured in $5{\mu}g/ml$ cytochalasin B for 5 hours for diploid formation. The treated oocytes were washed and cultured for 7 days. The polar body extrusion and degeneration rates were varied with $9.9{\sim}52.4%$ and $21.4{\sim}61.8%$ by repetition. The polar body extruded oocytes were shown the polar body chromosome and metaphase II plate by staining. However the non-extruded oocytes were shown expanded nucleus with 39.1%, premature chromosome condensation with 19.6%, metaphase I plate with 10.9 %, metaphase II with 13%, condensed chromatin with 6.5%, and absent nuclear material with 8.7%. The oocytes that were not examined for the polar body extrusion were cleaved 45.0%, and developed to blastocyst stage with 11.3%. In examined oocytes for polar body extrusion,. the polar body extruded oocytes were cleaved 94.2% and developed with 42.5%. This result suggests that discarding of the degenerating oocytes and oocytes that not extruded polar body will be effective for experiments of culturing effect in porcine embryos and embryo biotechnology.

Effects of Follicle Cells on the Chymotrypsin Resistance of Mouse Oocytes (난포세포가 생쥐 난자의 Chymotrypsin에 대한 내성에 미치는 영향)

  • Kim, Seong-Im;Bae, In-Ha;Kim, Hae-Kwon;Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.407-417
    • /
    • 1999
  • Objective: Mammalian follicle cells are the most important somatic cells which help oocytes grow, mature and ovulate and thus are believed to provide oocytes with various functional and structural components. In the present study we have examined whether cumulus or granulosa cells might playa role in establishing the plasma membrane structure of mouse oocytes during meiotic maturation. Design: In particular the differential resistances of mouse oocytes against chymotrypsin treatment were examined following culture with or without cumulus or granulosa cells, or in these cell-conditioned media. Results: When mouse denuded oocytes, freed from their surrounding cumulus cells, were cultured in vitro for $17{\sim}18hr$ and then treated with 1% chymotrypsin, half of the oocytes underwent degeneration within 37.5 min ($t_{50}=37.5{\pm}7.5min$) after the treatment. In contrast cumulus-enclosed oocytes showed $t_{50}=207.0$. Similarly, when oocytes were co-cultured with cumulus cells which were not associated with the oocytes but present in the same medium, the $t_{50}$ of co-cultured oocytes was $177.5{\pm}13.1min$. Furthermore, when oocytes were cultured in the cumulus cell-conditioned medium, $t_{50}$ of these oocytes was $190.0{\pm}10.8min$ whereas $t_{50}$ of the oocytes cultured in M16 alone was $25.5{\pm}2.9min$. Granulosa cell-conditioned medium also increased the resistance of oocytes against chymotrypsin treatment such that $t_{50}$ of oocytes cultured in granulosa cell-conditioned medium was $152.5{\pm}19.0min$ while that of oocytes cultured in M16 alone was $70.0{\pm}8.2min$. To see what molecular components of follicle cell-conditioned medium are involved in the above effects, the granulosa cell-conditioned medium was separated into two fractions by using Microcon-10 membrane filter having a 10 kDa cut-off range. When denuded oocytes were cultured in medium containing the retentate, $t_{50}$ of the oocytes was $70.0{\pm}10.5min$. In contrast, $t_{50}$ of the denuded oocytes cultured in medium containing the filtrate was $142.0{\pm}26.5min$. $T_{50}$ of denuded oocytes cultured in medium containing both retentate and filtrate was $188.0{\pm}13.6min$. However, $t_{50}$ of denuded oocytes cultured in M16 alone was $70.0{\pm}11.0min$ and that of oocytes cultured in whole granulosa cell-conditioned medium was $156.0{\pm}27.9min$. When surface membrane proteins of oocytes were electrophoretically analyzed, no difference was found between the protein profiles of oocytes cultured in M16 alone and of those cultured in the filtrate. Conclusions: Based upon these results, it is concluded that mouse follicle cells secrete a factor(s) which enhance the resistance of mouse oocytes against a proteolytic enzyme treatment. The factor appears to be a small molecules having a molecular weight less than 10 kDa.

  • PDF