• Title/Summary/Keyword: Online survey

Search Result 3,102, Processing Time 0.033 seconds

The Effects of Self-Determination on Entrepreneurial Intention in Office Workers: Focusing on the Dual Mediation of Innovativeness and Prception of the Startup Support System (직장인의 자기결정성이 창업의지에 미치는 영향: 혁신성과 창업지원정책인식의 이중매개를 중심으로)

  • Lim, Jae Sung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Recently, global business environment is changing dramatically along with the acceleration of technological innovation amid the war, climatic change, and geopolitical instability. Accordingly, it is difficult to predict or plan for the future as the volatility, complexity, ambiguity, and uncertainty of the industrial ecosystem continue to increase. Therefore, organizations are undergoing inevitable restructuring in accordance with their survival strategy, for instance, removing marginal businesses or firing. Accordingly, office workers are seeking a startup as an alternative for their continuous economic activity amid rising anxiety factors that make them think they would lose their jobs unintentionally. Here, this study is aimed to verify through what paths office workers' self-determination influences the process of converting to a startup. For this study, an online survey was carried out, and 310 respondents' valid data were analyzed through SPSS and AMOS. To sum up the results, first, office workers' self-determination did not have significant effects on entrepreneurial intention. However, it was confirmed that self-determination had positive (+) effects on innovativeness and perception of the startup support system. This result shows that their psychology works to prepare step by step by accumulating innovative experiences and increasing perception of the startup support system from a long-term life path perspective rather than challenging startups right way. Second, innovativeness is found to have positive (+) effects on entrepreneurial intention. Also, perception of the startup support system had positive (+) effects on entrepreneurial intention. This implies that when considering startups, they are highly aware of the government's various startup support systems. Third, innovativeness is found to have positive (+) effects on perception of the startup support system. It is judged that perception of the startup support system is valid for prospective founders to exhibit their innovativeness and realize new ideas. Fourth, it was confirmed that innovativeness and perception of the startup support system mediated correlation between self-determination and entrepreneurial intention, and perception of the startup support system mediated correlation between innovativeness and entrepreneurial intention, which shows that it is a crucial factor in entrepreneurial intention. Although previous studies related to startups deal with students mostly, this study targets office workers who form a great part in economic activities, which makes it academically valuable in terms of being differentiated from others and extending the scope of research. Also, when we consider the fact that the motivation for self-determination alone fails to stimulate entrepreneurial intention and the complete mediation of innovativeness and the startup support system, it has great implications in practical aspects such as the government's human and material support systems. In the selection and analysis of samples, this study exhibits a limitation that the problem of common method bias is not completely resolved. Also, additional definitive research is needed on whether entrepreneurial intention is formed and converted into startup behavior. Academically and practically, this study deals with the relationship between humans' psychological motives and startups which has not been handled sufficiently in previous studies. The conversion of office workers to startups is expected to have effects on individuals' economic stability and the state's job creation; therefore, it needs to be investigated continuously for its great value.

  • PDF

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.