• Title/Summary/Keyword: Online scheduling

Search Result 40, Processing Time 0.022 seconds

End-to-end Delay Analysis and On-line Global Clock Synchronization Algorithm for CAN-based Distributed Control Systems (CAN 기반 분산 제어시스템의 종단 간 지연 시간 분석과 온라인 글로벌 클럭 동기화 알고리즘 개발)

  • Lee, Hee-Bae;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.677-680
    • /
    • 2003
  • In this paper, the analysis of practical end-to-end delay in worst case is performed for distributed control system considering the implementation of the system. The control system delay is composed of the delay caused by multi-task scheduling of operating system, the delay caused by network communication, and the delay caused by the asynchronous between them. Through simulation tests based on CAN(Controller Area Network), the proposed end-to-end delay in worst case is validated. Additionally, online clock synchronization algorithm is proposed here for the control system. Through another simulation test, the online algorithm is proved to have better performance than offline one in the view of network bandwidth utilization.

  • PDF

A Scheduler and Scheduling Algorithm for Time Slot Assignment based on Wavelength (파장 단위의 Time Solt 할당을 위한 스케줄러 및 스케줄링 알고리즘)

  • Kim Kyoung-Mok;Oh Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.1-7
    • /
    • 2004
  • Increase of internet users and new type of applied traffic such as game, news, distributed computing, online image conference, and real time audio and video have leaded to demand for more bandwidth for each application. This algorithm represents a complex optical exchanger having typical wavelength switching function and time-slotted transmission function. Performance assessment of the proposed OXC (Optical Cross connect) sttucture defines LFS (Limit Frame Size) and VFS (Variable Frame Size) for classification by packet type and calculates the channel effect and loss probability depending the demanded bandwidth by access node increase. Optical exchanger in this type of structure can guarantee future network expansion as well as decrease of frame collision resulted from node increase.

Development of Dynamic Scheduling Platform using VR Content Authoring (VR 콘텐츠 저작을 이용한 동적 스케줄링 플랫폼 개발)

  • Young-Sik, Lee;Duk-Hee, Lee;Chul-Jae, Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1187-1192
    • /
    • 2022
  • Gangwon-do is a representative leisure resort. However, the provision of tourism information has not escaped the existing image- and text-oriented simplicity. Therefore, a linkage strategy for the content business is needed to revitalize tourist attractions. In this paper, first, we provide a 360-degree rotating VR content authoring function. Second, we propose a dynamic platform including a function that allows users to easily author tour scheduling after registering VR content on a map. Finally, the proposal system provides pre-tourism customers with an opportunity to increase satisfaction by providing online pre-experience.

A Real-Time Disk Prefetch Scheme for Continuous Media Playback (연속매체 상영을 위한 실시간 디스크 프리팻칭 기법)

  • Lim Sung Chae
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.547-554
    • /
    • 2004
  • To play back CM (Continuous Media) in online mode, the multimedia system Is required to have a real-time disk scheduling scheme that can efficiently fulfill the strict temporal constraints of serviced CM streams to prevent hiccups. In general, such disk scheduling is performed based on the concept of periodic prefetching since a CM stream has a rather long Playback time. In this paper, we also propose a periodic prefetching scheme that runs by using real-time disk channels, called on-time delivery channels. Since the channels are generated from the bulk-SCAN algorithm and they can be allocated in a very flexible manner based on the EDF (earliest-deadline-first) algorithm, the proposed scheme provides a better Performance in terms of I/O throughput and the average response time, as well as hiccup-free playback of concurrent CM streams. To show that the proposed scheme outperforms other methods, we give some simulation results.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.

A Multi-Class Task Scheduling Strategy for Heterogeneous Distributed Computing Systems

  • El-Zoghdy, S.F.;Ghoneim, Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.117-135
    • /
    • 2016
  • Performance enhancement is one of the most important issues in high performance distributed computing systems. In such computing systems, online users submit their jobs anytime and anywhere to a set of dynamic resources. Jobs arrival and processes execution times are stochastic. The performance of a distributed computing system can be improved by using an effective load balancing strategy to redistribute the user tasks among computing resources for efficient utilization. This paper presents a multi-class load balancing strategy that balances different classes of user tasks on multiple heterogeneous computing nodes to minimize the per-class mean response time. For a wide range of system parameters, the performance of the proposed multi-class load balancing strategy is compared with that of the random distribution load balancing, and uniform distribution load balancing strategies using simulation. The results show that, the proposed strategy outperforms the other two studied strategies in terms of average task response time, and average computing nodes utilization.

Optimal Bandwidth Allocation and QoS-adaptive Control Co-design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.596-606
    • /
    • 2008
  • In this paper, we present a co-design methodology of dynamic optimal network-bandwidth allocation (ONBA) and adaptive control for networked control systems (NCSs) to optimize overall control performance and reduce total network-bandwidth usage. The proposed dynamic co-design strategy integrates adaptive feedback control with real-time scheduling. As part of this co-design methodology, a "closed-loop" ONBA algorithm for NCSs with communication constraints is presented. Network-bandwidth is dynamically assigned to each control loop according to the quality of performance (QoP) information of each control loop. As another part of the co-design methodology, a network quality of service (QoS)-adaptive control design approach is also presented. The idea is based on calculating new control values with reference to the network QoS parameters such as time delays and packet losses measured online. Simulation results show that this co-design approach significantly improves overall control performance and utilizes less bandwidth compared to static strategies.

Alleviating the Tower Mechanical Load of Multi-MW Wind Turbines with LQR Control

  • Nam, Yoonsu;Kien, Pham Trung;La, Yo-Han
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1024-1031
    • /
    • 2013
  • This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbines, a set of operating conditions is identified and then a LQR controller is designed for each of the operating points. The feedback controller gains are then interpolated linearly to get a control law for the entire operating region. In addition, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of this method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with those obtained when using a PI controller.

Subtitle Automatic Generation System using Speech to Text (음성인식을 이용한 자막 자동생성 시스템)

  • Son, Won-Seob;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.81-88
    • /
    • 2021
  • Recently, many videos such as online lecture videos caused by COVID-19 have been generated. However, due to the limitation of working hours and lack of cost, they are only a part of the videos with subtitles. It is emerging as an obstructive factor in the acquisition of information by deaf. In this paper, we try to develop a system that automatically generates subtitles using voice recognition and generates subtitles by separating sentences using the ending and time to reduce the time and labor required for subtitle generation.

Stochastic Optimization of Multipath TCP for Energy Minimization and Network Stability over Heterogeneous Wireless Network

  • Arain, Zulfiqar Arain;Qiu, Xuesong;Zhong, Lujie;Wang, Mu;Chen, Xingyan;Xiong, Yongping;Nahida, Kiran;Xu, Changqiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.195-215
    • /
    • 2021
  • Multipath Transport Control Protocol (MPTCP) is a transport layer protocol that enables multiple TCP connections across various paths. Due to path heterogeneity, it incurs more energy in a multipath wireless network. Recent work presents a set of approaches described in the literature to support systems for energy consumption in terms of their performance, objectives and address issues based on their design goals. The existing solutions mainly focused on the primary system model but did not discourse the overall system performance. Therefore, this paper capitalized a novel stochastically multipath scheduling scheme for data and path capacity variations. The scheduling problem formulated over MPTCP as a stochastic optimization, whose objective is to maximize the average throughput, avoid network congestion, and makes the system more stable with greater energy efficiency. To design an online algorithm that solves the formulated problem over the time slots by considering its mindrift-plus penalty form. The proposed solution was examined under extensive simulations to evaluate the anticipated stochastic optimized MPTCP (so-MPTCP) outcome and compared it with the base MPTCP and the energy-efficient MPTCP (eMPTCP) protocols. Simulation results justify the proposed algorithm's credibility by achieving remarkable improvements, higher throughput, reduced energy costs, and lower-end to end delay.