• Title/Summary/Keyword: Online parameter identification

Search Result 15, Processing Time 0.023 seconds

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

Realtime e-Actuator Fault Detection using Online Parameter Identification Method (온라인 식별 및 매개변수 추정을 이용한 실시간 e-Actuator 오류 검출)

  • Park, Jun-Gi;Kim, Tae-Ho;Lee, Heung-Sik;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.376-382
    • /
    • 2014
  • E-Actuator is an essential part of an eVGT, it receives the command from the main ECU and controls the vane. An e-Actuator failure can cause an abrupt change in engine output and it may induce an accident. Therefore, it is required to detect anomalies in the e-Actuator in real time to prevent accidents. In this paper, an e-Actuator fault detection method using on-line parameter identification is proposed. To implement on-line fault detection algorithm, many constraints are considered. The test input and sampling rate are selected considering the constraints. And new recursive system identification algorithm is proposed which reduces the memory and MCU power dramatically. The relationship between the identified parameters and real elements such as gears, spring and motor are derived. The fault detection method using the relationship is proposed. The experiments with the real broken gears show the effectiveness of the proposed algorithm. It is expected that the real time fault detection is possible and it can improve the safety of eVGT system.

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.738-741
    • /
    • 2004
  • The overall performance of AC servo system is greatly affected by the uncertainties of unpredictable mechanical parameter variations and external load disturbances. Therefore, to compensate this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an online identification method of mechanical parameters/load disturbances for AC servo system using Support Vector Regression (SVR). The proposed methodology advocates analytic parameter regression directly from the training data, rather than adaptive controller and observer approaches commonly used in motion control applications. The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with large measurement noise.

  • PDF

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures

  • Dhanalakshmi, K.;Umapathy, M.;Ezhilarasi, D.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.367-384
    • /
    • 2011
  • This paper presents the design and experimental evaluation of fast output sampling feedback controller to minimize structural vibration of a cantilever beam using Shape Memory Alloy (SMA) wires as control actuators and piezoceramics as sensor and disturbance actuator. Linear dynamic models of the smart cantilever beam are obtained using online recursive least square parameter estimation. A digital control system that consists of $Simulink^{TM}$ modeling software and dSPACE DS1104 controller board is used for identification and control. The effectiveness of the controller is shown through simulation and experimentation by exciting the structure at resonance.